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Preface

Privacy in statistical databases is a discipline whose purpose is to provide
solutions to the tension between the increasing social, political and economical
demand of accurate information, and the legal and ethical obligation to protect
the privacy of the various parties involved. Those parties are the respondents
(the individuals and enterprises to which the database records refer), the data
owners (those organizations spending money in data collection) and the users
(the ones querying the database, who would like their queries to stay confiden-
tial). Beyond law and ethics, there are also practical reasons for data collecting
agencies to invest in respondent privacy: if individual respondents feel their pri-
vacy guaranteed, they are likely to provide more accurate responses. Data owner
privacy is primarily motivated by practical considerations: if an enterprise col-
lects data at its own expense, it may wish to minimize leakage of those data to
other enterprises (even to those with whom joint data exploitation is planned).
Finally, user privacy results in increased user satisfaction, even if it may curtail
the ability of the database owner to profile users.

There are at least two traditions in statistical database privacy, both of which
started in the 1970s: one stems from official statistics, where the discipline is
also known as statistical disclosure control (SDC), and the other originates from
computer science and database technology. In official statistics, the basic con-
cern is respondent privacy. In computer science, one started with respondent
privacy but, from 2000 onwards, growing attention has been devoted to owner
privacy (privacy-preserving data mining) and user privacy (private information
retrieval). In the last few years, the interest and the achievements of computer
scientists in the topic have substantially increased.

Privacy in Statistical Databases 2008 (PSD 2008) was held under the spon-
sorship of the UNESCO Chair in Data Privacy, which intends to act as a stable
umbrella for the PSD biennial conference series from now on. PSD 2008 was a
successor of PSD 2006, the final conference of the Eurostat-funded CENEX-SDC
project, held in Rome in 2006, and PSD 2004, the final conference of the EU
FP5 CASC project (IST-2000-25069), held in Barcelona in 2004. Proceedings of
PSD 2006 and PSD 2004 were published by Springer in LNCS 4302 and LNCS
3050, respectively. The three PSD conferences held so far are a follow-up of a
series of high-quality technical conferences on SDC which started one decade ago
with “Statistical Data Protection-SDP 1998”, held in Lisbon in 1998 and with
proceedings published by OPOCE, and continued with the AMRADS project
SDC Workshop, held in Luxemburg in 2001 and with proceedings published by
Springer in LNCS 2316.

For PSD 2008, the Program Committee accepted 27 papers out of 37 submis-
sions from 16 different countries in five different continents. Each submitted paper
received at least two reviews. These proceedings contain the revised versions of
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the accepted papers, which are a fine blend of contributions from the areas of of-
ficial statistics and computer science. Covered topics include tabular data protec-
tion, methods and case studies for microdata protection, disclosure risk assessment
in microdata protection, on-line databases and remote access, privacy-preserving
data mining, private information retrieval and legal issues.

We are indebted to many people. First, to the Government of Catalonia for
financial support of the UNESCO Chair in Data Privacy, which enabled the
latter to sponsor PSD 2008. Also, to the Organizing Committee for making the
conference possible and especially to Jesús Manjón, who helped with these pro-
ceedings. In evaluating the papers we were assisted by the Program Committee
and the following external reviewers: Javier Herranz, Marlow Lemons, Thomas
B. Pedersen, Adam Persing and Elizabeth Ransom.

We also wish to thank all the authors of submitted papers and apologize for
possible omissions.

July 2008 Josep Domingo-Ferrer
Yücel Saygın
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Yücel Saygın Sabancı University, Turkey
Eric Schulte-Nordholt Statistics Netherlands, The Netherlands
Francesc Sebé Rovira i Virgili University, Catalonia, Spain
Natalie Shlomo University of Southampton, UK
Julian Stander University of Plymouth, UK
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Glòria Pujol Rovira i Virgili University, Catalonia, Spain



Table of Contents

Tabular Data Protection

Using a Mathematical Programming Modeling Language for Optimal
CTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Jordi Castro and Daniel Baena

A Data Quality and Data Confidentiality Assessment of Complementary
Cell Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Lawrence H. Cox

Pre-processing Optimisation Applied to the Classical Integer
Programming Model for Statistical Disclosure Control . . . . . . . . . . . . . . . . 24

Martin Serpell, Alistair Clark, Jim Smith, and Andrea Staggemeier

How to Make the τ -ARGUS Modular Method Applicable to Linked
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Peter-Paul de Wolf and Sarah Giessing

Bayesian Assessment of Rounding-Based Disclosure Control . . . . . . . . . . . 50
Jon J. Forster and Roger C. Gill

Cell Bounds in Two-Way Contingency Tables Based on Conditional
Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Byran Smucker and Aleksandra B. Slavković
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Victor Muntés-Mulero, and Josep Ll. Larriba-Pey

Extensions of the Re-identification Risk Measures Based on Log-Linear
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Daniela Ichim

Use of Auxiliary Information in Risk Estimation . . . . . . . . . . . . . . . . . . . . . 213
Loredana Di Consiglio and Silvia Polettini

Accounting for Intruder Uncertainty Due to Sampling When Estimating
Identification Disclosure Risks in Partially Synthetic Data . . . . . . . . . . . . . 227

Jörg Drechsler and Jerome P. Reiter

How Protective Are Synthetic Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
John M. Abowd and Lars Vilhuber

On-Line Databases and Remote Access

Auditing Categorical SUM, MAX and MIN Queries . . . . . . . . . . . . . . . . . . 247
Francesco M. Malvestuto

Reasoning under Uncertainty in On-Line Auditing . . . . . . . . . . . . . . . . . . . 257
Gerardo Canfora and Bice Cavallo

A Remote Analysis Server – What Does Regression Output Look
Like? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Christine M. O’Keefe and Norm M. Good



Table of Contents XI

Privacy-Preserving Data Mining and Private
Information Retrieval

Accuracy in Privacy-Preserving Data Mining Using the Paradigm of
Cryptographic Elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Emmanouil Magkos, Manolis Maragoudakis,
Vassilis Chrissikopoulos, and Stefanos Gridzalis

A Privacy-Preserving Framework for Integrating Person-Specific
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Murat Kantarcioglu, Wei Jiang, and Bradley Malin

Peer-to-Peer Private Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Josep Domingo-Ferrer and Maria Bras-Amorós

Legal Issues

Legal, Political and Methodological Issues in Confidentiality in the
European Statistical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Jean Marc Museux, Martine Peeters, and Maria João Santos

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335



Using a Mathematical Programming Modeling

Language for Optimal CTA

Jordi Castro1,�,�� and Daniel Baena2

1 Department of Statistics and Operations Research,
Universitat Politècnica de Catalunya,

Jordi Girona 1–3, 08034 Barcelona, Catalonia
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2 Institut d’Estad́ıstica de Catalunya,
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Abstract. Minimum-distance controlled tabular adjustment methods
(CTA) have been formulated as an alternative to the cell suppression
problem (CSP) for tabular data. CTA formulates an optimization
problem with fewer variables and constraints than CSP. However, the
inclusion of binary decisions about protection sense of sensitive cells
(optimal CTA) in the formulation, still results in a mixed integer-linear
problem. This work shows how mathematical programming modeling
languages can be used to develop a prototype for optimal CTA based on
Benders method. Preliminary results are reported for some medium size
two-dimensional tables. For this type of tables, the approach is compet-
itive with other general-purpose algorithms implemented in commercial
solvers.

Keywords: statistical disclosure control, controlled tabular adjustment,
mixed-integer linear programming, Benders decomposition.

1 Introduction

Minimum-distance controlled tabular adjustment methods (CTA) were suggested
in [2,7] as an alternative to the difficult cell suppression problem (CSP) [3,8]. In
some instances, the quality of CTA solutions has shown to be higher than that
provided by CSP ones [4].

Although CTA formulates an optimization problem with fewer variables and
constraints than CSP, it is also a mixed integer-linear problem (MILP) if the
binary decision of protection sense of sensitive cells is included in the model
(optimal CTA). Therefore, for some instances, the solution time of optimal CTA
by a general purpose solver, like CPLEX or XPress, can still be large. (Some
� Supported by grant MTM2006-05550 of the Spanish Ministry of Science and Edu-

cation.
�� Corresponding author.

J. Domingo-Ferrer and Y. Saygın (Eds.): PSD 2008, LNCS 5262, pp. 1–12, 2008.
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metaheuristics approaches have been used, but only for small-medium instances
[6].) For MILP models there are some specialized algorithms. One of them is
Benders method [1]. In this work we show how a mathematical programming
modeling language can be used for a prototype for optimal CTA based on Ben-
ders decomposition. Preliminary results with this prototype are reported, using
a battery of two-dimensional tables. For these instances, the algorithm is more
efficient that the general purpose solver implemented in CPLEX.

The paper is organized as follows. Section 2 reviews the CTA method. Section
3 outlines the Benders decomposition algorithm for the non mathematical pro-
gramming experts. Section 4 shows how this approach can be implemented in the
AMPL mathematical programming language. Section 5 illustrates the approach
in the solution of a small example. Finally, Section 6 reports computational
results in the solution of a set of two-dimensional tables.

2 The Optimal CTA Problem

Given (i) a set of cells ai, i = 1, . . . , n, that satisfy some linear relations Aa = b (a
being the vector of ai’s); (ii) a lower and upper bound for each cell i = 1, . . . , n,
respectively lai and uai , which are considered to be known by any attacker; (iii)
a set P = {i1, i2, . . . , ip} ⊆ {1, . . . , n} of indices of sensitive cells; (iv) and a lower
and upper protection level for each sensitive cell i ∈ P , respectively lpli and upli,
such that the released values satisfy either xi ≥ ai + upli or xi ≤ ai − lpli; the
purpose of CTA is to find the closest safe values xi, i = 1, . . . , n, according to
some distance L, that makes the released table safe. This involves the solution
of the following optimization problem:

min
x

||x− a||L
s. to Ax = b

lai ≤ xi ≤ uai i = 1, . . . , n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ P .

(1)

Problem (1) can also be formulated in terms of deviations from the current cell
values. Defining zi = xi − ai, i = 1, . . . , n —and similarly lzi = lxi − ai and
uzi = uxi − ai—, (1) can be recast as:

min
z

||z||L
s. to Az = 0

lzi ≤ zi ≤ uzi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ P ,

(2)

z ∈ Rn being the vector of deviations. Using the L1 distance, and after some
manipulation, (2) can be written as
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min
z+,z−,y

n∑
i=1

wi(z+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+

i ≤ uzi i �∈ P
0 ≤ z−i ≤ −lzi i �∈ P
upli yi ≤ z+

i ≤ uzi yi i ∈ P
lpli(1 − yi) ≤ z−i ≤ −lzi(1− yi) i ∈ P ,

(3)

w ∈ Rn being the vector of cell weights, z+ ∈ Rn and z− ∈ Rn the vector of
positive and negative deviations in absolute value, and y ∈ Rp being the vector
of binary variables associated to protections senses. When yi = 1 the constraints
mean upli ≤ z+

i ≤ uzi and z−i = 0, thus the protection sense is “upper”; when
yi = 0 we get z+

i = 0 and lpli ≤ z−i ≤ −lzi , thus protection sense is “lower”.
Model (3) is a (difficult) MILP.

3 Outline of Benders Method for MILP Problems

Benders decomposition method [1] was suggested for problems with two types of
variables, one of them considered as “complicating variables”. In MILP models
complicating variables are the binary/integer ones. Consider the following MILP
primal problem (P ) in variables (x, y)

(P )

min cT x + dT y
s. to A1x + A2y = b

x ≥ 0
y ∈ Y,

where y are the binary/complicating variables, c, x ∈ Rn1 , d, y ∈ Rn2 , A1 ∈
Rm×n1 and A2 ∈ Rm×n2 . For binary problems, as in optimal CTA, we have
Y = {0, 1}n2. Fixing some y ∈ Y , we obtain:

(Q)
min cT x
s. to A1x = b−A2y

x ≥ 0.

The dual of (Q) is:

(QD)
max uT (b−A2y)
s. to AT

1 u ≤ c
u ∈ Rm.

It is known that if (QD) has a solution then (Q) has a solution too, and both
objective functions coincide; if (QD) is unbounded, then (Q) is infeasible. Let
assume that (QD) is never infeasible (indeed, this is the case in optimal CTA).
If, as notation convention, we consider that the objective of (Q) is +∞ when it
is infeasible, then (P ) can be written as

(P ′) min
{
dT y + max

{
uT (b −A2y)|AT

1 u ≤ c, u ∈ Rm
}}

s. to y ∈ Y.



4 J. Castro and D. Baena

LetU =
{
u|AT

1 u ≤ c, u ∈ Rm
}

be the convex feasible setof (QD).ByMinkowski
representation we know that every point u ∈ U may be represented as a convex
combination of the vertices u1, . . . , us and extreme rays v1, . . . , vt of the convex
polytope U . Therefore any u ∈ U may be written as

u =
∑s

i=1 λiu
i +

∑t
j=1 µjv

j∑s
i=1 λi = 1

λi ≥ 0 i = 1, . . . , s
µj ≥ 0 j = 1, . . . , t.

If vjT (b − A2y) > 0 for some j ∈ {1, . . . , t} then (QD) is unbounded, and thus
(Q) is infeasible. We then impose

vjT (b−A2y) ≤ 0 j = 1, . . . , t.

The optimal solution of (QD) is then known to be in a vertex of U , and (P ′)
may be rewritten as

(P ′′)
min dT y + max

i=1,...,s
(uiT (b−A2y))

s. to vjT (b −A2y) ≤ 0 j = 1, . . . , t
y ∈ Y.

Introducing variable θ, (P ′′) is equivalent to the Benders problem (BP ):

(BP )

min θ
s. to θ ≥ dT y + uiT (b−A2y) i = 1, . . . , s

vjT (b −A2y) ≤ 0 j = 1, . . . , t
y ∈ Y.

Problem (BP ) is impractical since s and t can be very large, and in addition
the vertices and extreme rays are unknown. Instead, the method considers a
relaxation (BPr) with a subset of the vertices and extreme rays. The relaxed
Benders problem (or master problem) is thus:

(BPr)

min θ
s. to θ ≥ dT y + uiT (b −A2y) i ∈ I ⊆ {1, . . . , s}

vjT (b−A2y) ≤ 0 j ∈ J ⊆ {1, . . . , t}
y ∈ Y.

Initially I = J = ∅, and new vertices and extreme rays provided by the subprob-
lem (QD) are added to the master problem, until the optimal solution is found.
In summary, the steps of the Benders algorithm are:

Benders Algorithm
0. Initially I = ∅ and J = ∅. Let (θ∗r ,y∗

r ) be the solution of current master
problem (BPr), and (θ∗,y∗) the optimal solution of (BP ).

1. Solve master problem (BPr) obtaining θ∗r and w∗
r . At first iteration, θ∗r = −∞

and yr is any feasible point in Y .
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2. Solve subproblem (QD) using y = y∗
r . There are two cases:

(a) (QD) has finite optimal solution in vertex ui0.
– If θ∗r = dT y∗

r + ui0T (b − A2y
∗
r ) then STOP. Optimal solution is

y∗ = y∗
r with cost θ∗ = θ∗r .

– If θ∗r < dT y∗
r + ui0T (b− A2y

∗
r) then this solution violates constraint

of (BP ) θ > dT y +ui0T (b−A2y). Add this new constraint to (BPr):
I ← I ∪ {i0}.

(b) (QD) is unbounded along segment ui0 + λvj0 (ui0 is current vertex, vj0

is extreme ray). Then this solution violates constraint of (BP ) vj0T (b−
A2w) ≤ 0. Add this new constraint to (BPr): J ← J ∪ {j0}; vertex may
also be added: I ← I ∪ {i0}.

3. Go to step 1 above.

Convergence is guaranteed since at each iteration one or two constraints are
added to (BPr), no constraints are repeated, and the maximum number of con-
straints is s + t.

4 Prototype of Benders Method for Optimal CTA

It can be shown that, applying Benders method to the optimal CTA problem
(3), the formulation subproblem (QD) is given by (see [5] for details):

max
µ+

u ,µ−
u ,µ+

l ,µ−
l

−µ+T

u u+ − µ−T

u u− + µ+T

l l+ + µ−T

l l−

s. to
(

AT

−AT

)
λ−

(
µ+

u

µ−
u

)
+
(

µ+
l

µ−
l

)
=
(

w
w

)
µ+

u , µ−
u , µ+

l , µ−
l ≥ 0, λ free ,

(4)

where µ+
u , µ−

u , µ+
l , µ−

l ∈ Rn, λ ∈ Rm, and l+, l−, u+, u− provide the lower and
upper bounds of z+ and z− once binary variables y ∈ Rp are fixed.

Similarly, the formulation of the master (BPr) is

min
θ,y

θ

s. to
∑
h/∈P

(−µ+,i
uh

uzh
+ µ−,i

uh
lzh

) +
∑
h∈P

(µ−,i
uh

lzh
+ µ−,i

lh
lplh)+

+
∑
h∈P

(−µ+,i
uh

uzh
− µ−,i

uh
lzh

+ µ+,i
lh

uplh − µ−,i
lh

lplh)yh ≤ θ i ∈ I∑
h/∈P

(−v+,j
uh

uzh
+ v−,j

uh
lzh

) +
∑
h∈P

(v−,j
uh

lzh
+ v−,j

lh
lplh)+

+
∑
h∈P

(−v+,j
uh

uzh
− v−,j

uh
lzh

+ v+,j
lh

uplh − v−,j
lh

lplh)yh ≤ 0 j ∈ J

yh ∈ {0, 1} h ∈ P .

(5)

Constraint
θ ≥

∑
h∈P

min(lplh, uplh)wh (6)
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10 15 11 9 45

8 10(3) 12(4) 15 45

10 12 11(2) 13(5) 46

28 37 34 37 136

Fig. 1. Small table for optimal CTA by Benders method. Sensitive cells are in boldface.
Symmetricprotection limits lpli andupli are inbrackets.Weights are cell values (wi = ai).

may also be imposed to (5) since the master provides a lower bound on the
optimal objective, and the right-hand-side of (6) provides a known lower bound
on θ. Problems (4 ) and (5), together with the Benders algorithm were imple-
mented in the AMPL modeling language [9]. Appendix A shows an extract of
this implementation for (4 ) and (5).

5 Illustrative Example

Benders method is applied to the small two-dimensional table of Figure 1:

– Initialization (Step 0): I = J = ∅, lower bound (6) is 165.
– Iteration 1

• Step 1: Solve master problem (5) with only constraint (6), obtaining
θ∗r = 165, and y∗

ri
= 1 for all i = 0, . . . , 4.

• Step 2: Solve subproblem (4), with optimal objective 458 ≥ 165 = θ∗r .
Add first optimality cut

60y1 + 298160000y2 + 350776000y3 + 70155300y4 + θ ≥ 458

to (5).
– Iteration 2:

• Step 1: Solve master problem (5):

min θ
s. to 60y1 + 298160000y2+350776000y3+70155300y4+θ ≥ 458

θ ≥ 165.

obtaining θr = 165, yi = 1 for all i = 1, . . . , 4.
• Step 2: Solve subproblem (4), with optimal objective 458 ≥ 165 = θ∗r .

Add second optimality cut

−60y1 − 368y2 − 304y3 − 202y4 + θ ≥ −476

to (5).
...
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Table 1. Summary of illustrative example

iter. f∗
QD

θ∗
r y1 y2 y3 y4

1 458 165 0 0 0 0
2 458 165 1 1 1 1
3 330 165 1 0 0 1
4 334 165 1 1 0 1
5 346 165 0 1 0 0
6 303 165 0 1 0 1
7 334 238 0 0 1 0
8 303 274 1 0 1 0
9 303 303 1 0 1 0

Table 2. Instance dimensions

Instance n p m n. coef.

dale 16514 4923 405 33028
osorio 10201 7 202 20402
table8 1271 3 72 2542
targus 162 13 63 360
random1 22801 15000 302 45602
random2 30351 12000 352 60702
random3 40401 10000 402 80802
random4 40401 20000 402 80802
random5 35376 10000 377 70752
random6 10201 6000 202 20402
random7 10201 7000 202 20402
random8 20301 15000 302 40602
random9 20301 10000 302 40602
random10 40401 30000 402 80802
random11 30351 25000 352 60702
random12 10251 8500 252 20502
random13 37901 20000 402 75802
random14 22801 20000 302 45602
random15 25351 10000 352 50702
random16 22801 10000 302 45602
random17 22801 18500 302 45602
random18 15251 13000 252 30502
random19 15251 11000 252 30502
random20 22801 18500 302 45602
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– Iteration 9:
• Step 1: Solve master problem (5):

min θ
s.to 60y1+298160000y2+350776000y3+70155300y4 + θ ≥ 458

−60y1 − 368y2 − 304y3 − 202y4 + θ ≥ −476
36y1 + 298160000y2 + 44y3 − 90y4 + θ ≥ 276
−320y1 − 368y2 − 44y3 + 30y4 + θ ≥ −324
−36y1 − 72y2 + 36y3 + 280621000y4 + θ >= 274
54y1 + 24y2 − 44y3 − 418y4 + θ >= −91
350776000y1 + 298160000y2 + 44y3 − 30y4 + θ ≥ 378
−54y1 − 24y2 + 44y3 + 280621000y4 + θ ≥ 293
θ ≥ 165

obtaining θr = 303, and y1 = y3 = 1 and y2 = y4 = 0.
• Step 2: Solve subproblem (4), with optimal objective 303 = 303 = θr.

Solution found: y∗ = y∗
r .

Table 1 summarizes the example, showing for each iteration the optimal ob-
jective function of the subproblem “f∗

QD
” and the master problem “θ∗r”, and the

values of y∗
r .

Table 3. Results with Benders method

Instance CPU iter. MIP iter. Simp. iter. fQD θ

dale 8.47 20 2591 2783 3581.03 3549.53
osorio 73.94 123 13890 50903 6.0317 6.0073
table8 0.24 9 60 43 3.0848 3.0848
targus 0.62 16 449 399 59.3295 58.8393
random1 2.38 4 342 494 48477.7 47993
random2 3.48 5 463 775 38726.3 38398.8
random3 4.9 7 596 510 32170 31907.4
random4 4.22 4 338 466 64127.5 63522.7
random5 4.1 6 577 991 32159.7 31868
random6 1.73 7 1554 1395 12963.4 12835.9
random7 1.68 7 574 722 30250.1 29979.5
random8 3.46 6 461 661 48469 48088.3
random9 3.00 7 590 779 8852.87 8769.04
random10 5.90 5 372 642 64720.7 64111.1
random11 3.15 4 218 397 107088 106025
random12 4.07 12 1261 1282 18388 18210
random13 4.84 5 362 131 128188 127164
random14 3.15 5 337 495 170645 169344
random15 3.67 7 586 932 85189.8 84441.4
random16 4.26 9 985 1246 32339.3 32028
random17 3.24 5 468 635 59720.9 59170.5
random18 1.69 4 353 411 42052.8 41658.4
random19 2.02 5 462 553 35507.2 35209.6
random20 3.18 5 468 635 59720.9 59170.5
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Table 4. Results with CPLEX

Instance CPU MIP iter. f∗

dale 3.53 11559 3562.11
osorio 93.09 2093 6.0316
table8 1.08 147 3.0848
targus 0.13 107 59.3295
random1 14.26 33717 48074.07
random2 11.38 27526 38474.2
random3 8.75 23210 31998.93
random4 23.83 45053 63616.5
random5 9.41 23302 31953.81
random6 3.71 13754 12872.3
random7 4.69 16004 30063.69
random8 15.33 33749 48161.70
random9 8.2 22849 8791.66
random10 36.41 66306 64170.65
random11 26.8 55080 106138.14
random12 5.92 19329 18262.87
random13 22.42 44789 127343.58
random14 19.86 44124 169538.78
random15 9.06 23186 84688.72
random16 8.29 23228 32096.94
random17 19.08 41301 59240.23
random18 9.16 28959 41731.95
random19 8.53 24856 35280.94
random20 17.33 41301 59240.23

6 Computational Results

Benders algorithm for optimal CTA has been implemented using the AMPL math-
ematical programming modeling language [9]. This implementation has been ap-
plied to a set of four small pseudo-real and 20 random larger two-dimensional in-
stances obtained with the generator used in [3]. All runs were carried on a Sun
Fire V20Z server with two AMD Opteron processors (without exploiting paral-
lelism capabilities), 8 GB of RAM, and under the Linux operating system. Table 2
show the instance dimensions: number of cells n, number of sensitive cells p (which
is the number of binary variables), number of linear relations m, and number of co-
efficients in linear relations “n. coef.”.

Table 3 shows the results obtained with AMPL implementation of Benders
method. Column “CPU” provides the CPU time for solution of the master and
subproblems using CPLEX. Column “Benders iter.” gives the total number of
Benders iterations. Columns “MIP iter.”and “Simp. iter.” show the total number
of MIP and simplex iterations for, respectively, all masters and subproblems.
Columns fQD and θ show, respectively, the upper and lower bounds found. An
optimality tolerance of 1% was used for all runs.



10 J. Castro and D. Baena

Table 4 shows the results with the CPLEX branch-and-cut algorithm. Column
“CPU” provides the CPU time. Column “MIP iter.” gives the overall number
of MIP simplex iterations. Column f∗ provides the optimal objective function
found. As for Benders, an optimality tolerance of 1% was used for all runs. It can
be observed that in all instances, but for “dale” and “targus”, Benders method is
faster than CPLEX. In particular, efficiency of Benders increases with the num-
ber of sensitive cells (i.e., binary variables), as in instances “random10”, “ran-
dom11”, “random13”, “random14”, “random17” and “random18”. This makes
it a promising approach for large tables.

7 Conclusions

This work presented an AMPL implementation of Benders decomposition for
optimal CTA. The main benefit of this prototype code is to have a tool for
ease testing with alternative cuts. Preliminary results for some small-medium
two-dimensional tables show it can be a promising approach for more complex
tables, if Benders can be appropriately tuned to efficiently deal with them. The
development of a more efficient code, and applying it to larger two-dimensional
tables, and more complex structures, is part of the further work to be done.
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A AMPL Models for Benders Subproblem and Master

A.1 Extract of AMPL Implementation of (4)

###############################################
# Definiton of Benders subproblem for CTA
###############################################
param lp{1..ncells} default 0;
param up{i in 1..ncells} default (ub[i]-a[i]);;
param ln{1..ncells} default 0;
param un{i in 1..ncells}default (a[i]-lb[i]);

var la_up {1..ncells} >= 0;
var la_un {1..ncells} >= 0;
var la_lp{1..ncells} >= 0;
var la_ln {1..ncells} >= 0;
var lambda {1..nconstraints};

maximize QD:
sum {i in 1..ncells} (-la_up[i]*up[i] -la_un[i]*un[i]
+ la_lp[i]*lp[i] + la_ln[i]*ln[i]);

subj to R1_QD {i in 1..ncells}:
sum{l in Trasbegconst[i]..Trasbegconst[i+1]-1}

Trascoef[l]*lambda[Trasxcoef[l]]
-la_up[i] + la_lp[i] =c[i];

subj to R2_QD {i in 1..ncells}:
sum{l in Trasbegconst[i]..Trasbegconst[i+1]-1}

-Trascoef[l]*lambda[Trasxcoef[l]]
-la_un[i]+la_ln[i] =c[i];

A.2 Extract of AMPL Implementation of (5)

##################################################
# Definition of Benders master for CTA
##################################################
param nCUT >= 0 integer;
param iter >= 0 integer;
param mipgap;
param const {1..nCUT} default 0;
param consty {1..npcells,1..nCUT} default 0;
param cut_type {1..nCUT} symbolic within {"point","ray"};
param MinTheta;
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var y {1..npcells} binary;
var Theta;

minimize BPr: Theta;
#Feasibility/optimality cuts
subj to Cut_Point {j in 1..nCUT}:

if (cut_type[j]="point") then Theta else 0 >=
const[j] + sum {i in 1..npcells} consty[i,j]*y[i];

subj to RMinTheta: Theta >= MinTheta;
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Abstract. Complementary cell suppression has been used for disclosure limita-
tion of magnitude data such as economic censuses data for decades. This paper 
examines data quality and data confidentiality characteristics of cell suppres-
sion. We demonstrate that when cell suppression is not performed using a 
proper mathematical model, it can fail to protect. Moreover, we demonstrate 
that properly executed suppression based on standard disclosure definitions can 
be vulnerable to other attacks, sometimes fatally.  

Keywords: alternating cycle, releasing exact intervals, p/q-ambiguity rule. 

1   Introduction 

Tabular data are aggregated data organized into tables. Each tabular dimension corre-
sponds to a variable of interest partitioned into mutually exclusive characteristics.  
The simplest tabular structures are one- and two-way tables. A typical one-way table 
could present the number of students at a U.S. university receiving the grade A, B, C, 
D or F, respectively, in a particular course. A typical two-way table could present the 
aggregate of monthly sales from retail stores comprising 0-100, 101-200, or 200+ 
employees within each county of a state. 

The tabular structure defines a partition of the population of interest--each subject 
in the population is assigned to a unique cross-classification (cell) of all of the vari-
ables. In a table of counts (contingency table), each subject contributes one unit to its 
partition cell and zero otherwise.  If instead the subject contributes its particular value 
for a statistic (e.g., monthly retail sales), the data are magnitude data. Percentages, 
profit/loss, etc., also can be organized into tables, but interest here is restricted to 
nonnegative count and magnitude data. Tabular structures can be simple (two-way 
tables) or large (hierarchies of two-way tables), complex (multi-way tables, linked 
tables), or large and complex (linked multi-way tables). 

Statistical disclosure in tabular data is defined by a disclosure rule (sensitivity 
measure) that identifies the disclosure (sensitive) cells. These are the cells achieving a 
positive value for the sensitivity measure. The measure is a continuous function that 
also can be used to indicate how “far” a sensitive cell is from being nonsensitive--this 
“distance” is its protection limit. Statistical disclosure limitation (SDL) of tabular data 
is complete if and only if only the tightest (exact) interval estimate of each sensitive 
cell value computable from the released tabulations is nonsensitive.  These notions are 
made precise in [1] and elaborated in Section 2. 
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Complementary cell suppression (CCS) is a methodology for statistical disclosure 
limitation in tabular data. CCS replaces the value of each sensitive cell by a symbol 
(D for “disclosure”). Typically, these primary suppressions are insufficient to ensure 
complete SDL, and additional, nonsensitive cells (complementary suppressions) also 
have their values replaced by D. CCS methodology is focused on assuring good 
choices for the complementary cells, viz., a collection of cells that assures SDL while 
suppressing as little useful data as possible. See Section 2, and [2, 3] for a complete 
presentation. 

We examine the data quality and confidentiality characteristics of complementary 
cell suppression. Section 2 provides SDL preliminaries. Section 3 examines usability 
of suppressed data and other data quality characteristics of CCS, and describes an oft-
discussed alternative to full suppression--releasing exact intervals in lieu of symbols 
for suppressed values. In Section 4 we examine CCS mathematically. Section 5 pre-
sents vulnerabilities of CCS and a widely used sensitivity measure, and demonstrates 
serious vulnerabilities associated with releasing exact intervals. Section 6 contains 
concluding comments. 

2   Statistical Disclosure Limitation Preliminaries 

2.1   Sensitivity Measures 

SDL methods such as rounding and adding zero-mean random noise (random pertur-
bation) are alternatives to suppression for count data, but can be ineffective or inap-
propriate for magnitude data. Suppression has been applied to major, important data 
collections of economic and other magnitude data in the US, Canada and the Euro-
pean Union, in some cases for decades, based on software developed at the US Cen-
sus Bureau, the US National Center for Health Statistics, Statistics Canada, and the 
EU CASC Project. For these reasons, we focus on magnitude data. 

A simple, widely used disclosure rule for magnitude data is the p-percent rule 
which, in simplified form, states: a tabulation cell X is sensitive if, after subtracting 
the second largest contribution from the cell value, the remainder is within p-percent 
of the largest contribution. This rule is designed to prevent narrow estimation of any 
contribution to a cell value by a second contributor or third party. Note:  protecting 
the largest from the second largest assures protection for all others. 

X denotes a tabulation cell, and its cell value is x . Order the contributions to x 
from largest to smallest and denote these contributions xi, so that 

1 2; .... ....i i
i

x x x x x= ≥ ≥ ≥∑  Express p as a decimal; e.g., 20% = 0.20.  Sensitivity for 

the p-percent rule is expressed: 1
3

( ) (1/ ) 0p i
i

S X x p x
≥

= − >∑ . 

An extension of the p-percent rule that incorporates prior information in the hands 
of the intruder is the p/q-ambiguity rule: the releaser assumes that an intruder can 
estimate any contribution to within q-percent, 1 > q >> p. Express q as decimal. The 

sensitivity measure for the p/q-ambiguity rule is / 1
3

( ) ( / ) 0p q i
i

S X x q p x
≥

= − >∑ . When 
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q = 1, the p-percent and p/q-ambiguity rules are identical; otherwise, it is evident that 
the p/q-ambiguity rule is stricter than the p-percent rule—it identifies as sensitive all 
p-sensitive cells and possibly more. 

A sensitivity measure is a continuous function. If it is normalized with the leading 
coefficient = 1 (as above), then its value r measures the distance from the sensitive 
cell value x to larger values that would not be sensitive under the same circumstances.  
r is called the upper protection limit. Typically, the lower protection limit is set to –r, 
and the open interval (x –r, x + r) is the protection interval.  See [1]. 

2.2   Complementary Cell Suppression 

Complementary cell suppression is a very difficult problem theoretically and compu-
tationally. CCS usually is accomplished using mathematical programming. A mathe-
matical program for CCS is obtained as follows. 

Represent the tabular structure as Ay = b.  Entries of A are 0 or 1. The original data 
is a = (a1,…., an), so that Aa = b.  Denote the sensitive cell values ad(i), i = 1, …, s, 
and the protection limits  rd(i), 0 < rd(i)  < ad(i), with rk  = 0 otherwise. 
(Note:  in general, upper and lower protection limits can be unequal). A mathematical 
programming model for CCS is given by (1).  See also [4]. 

The first constraint of (1) preserves the tabular structure. The second and third  
enforce the sensitivity measure. M > 1 is a suitable constant. The choice of objective 
function is used to enforce some notion of data quality: to minimize number of cells 
suppressed, set ck = 1; to minimize total value suppressed, ck = ak; and, to minimize 
Berg entropy (a compromise between number and total value suppressed), ck = log (1+ 
ak).  Note that these are geometrical, not necessarily statistical, measures of quality. 

,

,1,

,2,

( )

min

1,...., ; 1,2; 1,...., :

(1 )

0,1; 1

k k
k

i j

k k i k k k k

k k i k k k k

j d i

c z

i s j k n

Ay b

a z y a r z

a Mz y a r z

z z
 

(1) 

2.3   Releasing Exact Intervals in Place of Suppressions 

Magnitude data are treated as continuous data, and therefore exact interval estimates 
of suppressed cell values yk can be obtained via linear programming: min yk (respec-
tively, max yk) subject to Ay = b. The exact interval for ak is [min yk, max yk].  By 
Sec. 2.2, model constraints assure exact intervals contain protection intervals. 

For the p-percent rule, sophisticated users can use compute exact intervals, albeit at 
some effort. Why, it has been argued, doesn’t the releaser release exact intervals in 
lieu of suppressed data? Doing so improves the ability of analysts to manipulate dis-
closure-limited tabular data, and perhaps analytical precision as well. From a data 
quality and usability perspective, this is a sound argument, raised in the 1970s.  
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Releasing intervals recently reemerged as partial cell suppression [5, 6]. We examine 
this and related issues from a data confidentiality standpoint in Section 5. 

3   Data Quality Characteristics of CCS 

We consider two dimensions of data quality 
 

- local quality:     focused on individual values and comparing values 
- global quality:   focused on distributions, inferences and statistics 
 

Local quality characteristics of tables with suppressions are as follows. Unsup-
pressed cell values are released unchanged. Users of tabular data are often interested 
in specific values, and users interested in any of the unsuppressed values are able to 
work with the “true” values. On the contrary, sensitive and complementary values are 
suppressed. Unsophisticated users interested in any of these values will be thwarted as 
true values are unavailable. If the releaser released exact interval estimates of sup-
pressed values, the unsophisticated user could impute interval midpoints for sup-
pressed data and analyze the “midpoint tables.” Users are likely to do this because it 
is simple. However, the resulting tables may fail to be additive, but at additional effort 
could be adjusted ([7]) to restore additivity. Alternatively, additivity is preserved if 
iterative proportional fitting (IPF) is used to impute suppressed values. The sophisti-
cated user can invoke  linear programming to do so even if the releaser fails to pro-
vide exact intervals. 

Exact intervals can be very broad as the position of values in the table may force 
complementary suppressions that are large. Also, the mechanics of the simplex algo-
rithm forces maximal masking of suppressed data. This is called overprotection or 
oversuppression.  In the working example to follow (Table 3), r(X) = 2 units of pro-
tection is required but 5 (or 8) units are actually provided. 

Prominent among global quality characteristics of tables with suppressions is that 
missing (suppressed) data thwarts analysis, somewhat so for regression and to a con-
siderable degree for analysis of trend. Release of exact intervals enables all users to 
proceed with analyses such as via midpoint or IPF imputation.. Releasing exact inter-
vals spares sophisticated users the trouble of computing the intervals directly. And, 
providing the intervals can demonstrate that the disclosure limitation was successful. 

4   Mathematical Properties of CCS 

4.1   CCS Can Be Vulnerable 

If complementary cell suppression is performed using a mathematical model that 
incorporates protection constraints explicitly, such as (1), exact intervals for sup-
pressed sensitive cells must be nonsensitive and disclosure limitation is complete.  
Model (1) is an integer linear program, which can be difficult to impossible to solve 
computationally by direct means such as branch and bound, except for small prob-
lems. Recent research has focused on solving medium to large CCS problems using 
branch and cut and specialized techniques [4]. Unfortunately, many organizations 
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Table 1. 3x3 Table With Internal Entries Suppressed 

( ) ( ) ( )

* * * 11 * * * 5 * * * 5

* * * 5 * * * 11 * * * 5

* * * 5 * * * 5 * * * 11

11 5 5 (21) 5 11 5 (21) 5 5 11 (21)

1 10 10

10 1 10

10 10 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

continue to solve CCS problems “by hand” or using computer programs based on “by 
hand” reasoning. These programs are faster than humans, but in the absence of CCS 
methodology, offer little improvement in terms of protection or data quality. As an 
example, we use Table 1, and a typical disclosure rule for counts that defines an un-
safe interval to be the closed interval [1, 4] or smaller (5-threshold rule). 

Table 1 is a 3x3x3 contingency table with all internal entries suppressed for confi-
dentiality. In lieu of releasing the internal entries (3-dimensional cells), all 2-
dimensional cells (“line” marginal totals) are released. This approach is believed to 
limit disclosure, such as in this example. 

Table 1 is not a realistic confidentiality example because it contains published 
marginal totals with value = 1. We address this momentarily. Meantime, compute 2-
dimensional Frechet lower bounds for cells (1,1,1), (2,2,2) and (3,3,3) within planes k 
= 1, 2, 3, respectively.  Each of these lower bounds = 1. Each of these three cells is 
constrained by a marginal total (vertical) = 1, and consequently these cells cannot 
achieve value > 1. Hence, each has value =1, which has been revealed and is sensi-
tive--disclosure limitation has been entirely unsuccessful. 

Now the issue of realism. Replace Table 1 by a table comprising 5 copies of Table 
1 stacked vertically, viz., a 3x3x15 table with two sets of planar marginals unchanged 
and the third (vertical) set with values five times those of Table 1 (table not shown 
here). This is a realistic example (no marginals < 5) for which 15 cells are revealed to 
have value = 1. 

Table 2, a two-dimensional table with suppressions, is a second example illustrat-
ing the failure of non-mathematical CCS methods. 

Table 2. 4x5 Table With Suppressions 

   18    21    18    23    80 
   D11    D12    D13      9    20 
   6    D22    D23      6    20 
   D31    5    5    D34    15 
   D41    5    6    D44    25 
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CCS in Table 2 may appear successful, as each suppressed cell is contained in a 
row and a column containing one or two additional suppressions and corresponding 
sums are > 5. But, in fact, D11 = 1 can be deduced: add the first two rows: 

11 12 13 23 33 19D D D D D+ + + + = ; add the second and third columns: 

12 13 23 33 18D D D D+ + + = ; subtract the latter from the former, to obtain D11 = 1. 

Both examples illustrate that CCS should be done algorithmically and NOT “by 
hand” or by software based, in essence, on “by hand” reasoning. 

4.2   The Mechanics of CCS 

Complementary cell suppression replaces all sensitive and selected nonsensitive val-
ues, which are fixed, by symbols, which can be treated as variables.  By definition, a 
particular CCS solution is complete if all exact interval for variables corresponding to 
sensitive values x contain the cell’s protection interval (x – r, x + r).  Table 3 will be 
used as a working example. 

Table 3. 4x5 Working Example 

    T     O     T     A     L      T 
          O 
 X(10)    B(5)       T 
          A 
  C(7)    A(8)       L 

 
X denotes a sensitive cell, and A, B, C denote X’s complementary suppressions. 

Table 3 is the simplest example possible, and it can be misleading to generalize from 
a simple example to the general case. However, as complex suppression patterns can 
be decomposed into simple patterns of (elaborations of) this form, for CCS any in-
formation derivable from Table 3 will be valid in general for tables with suppressions, 
viewed as a composite of smaller, simpler tables resembling (elaborations of) Table 3.  
For our analysis, we extract the essence of Table 3 and provide hypothetical values 
for the reduced marginal totals (Table 4). 

Table 4. Essentials of Table 3 

  17   13   30 
x=10 b=5   15 
c=7 a=8   15 

 
Let r = 2. Then X is protected if and only if no interval derivable for x is finer than 

(x-r, x+r) = (10-2, 10+2) = (8, 12). This condition holds if X is in an alternating cycle 
of suppressed cells - the cycle permits a flow of r = 2 units from x = 10 in both + and 
– directions.  The alternating cycle is given by 
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    17     13  30 
X (10)+/- B (5)-/+  15 
C (  7)-/+ A (8)+/-  15 

 
In the + direction, can move up to 5 units into X--more would force b < 0. 

 
    17     13  30 
X (15) B   (0)  15 
C (  2) A (13)  15 

 
In the – direction, we can move up to 8 units out of X--more would force a < 0. 

 
    17     13  30 
X   (2) B (13)  15 
C (15) A  (0)  15 

 
Verification that Table 4 protects X is demonstrated by exact intervals below.  As 

we can move r = 2 units in either direction, X is protected. 
 

      17       13  30 
X [2, 15] B [0, 13]  15 
C [2, 15] A [0, 13]  15 

 
CCS is also data dependent--the exact intervals above are much broader than the 

protection limit, whereas the same pattern fails to protect the table below. 
 

     17      6  23 
X (10)+/- B (5)-/+  15 
C (7)-/+ A (1)+/-    8 

5   Confidentiality Characteristics of CCS 

5.1   CCS, Cycles and Protection 

Movement of up to 5 (respectively, 8) units through sensitive cell X may be repre-
sented by the alternating cycle below. 

 
    17     13  30 
X (10)+/- B (5)-/+  15 
C (7)-/+ A (8)+/-  15 

 
    17     13  30 
     x+/-     b-/+  15 
     c-/+     a+/-  15 
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Cells marked with +/- have the same parity as x; those with -/+ have opposite par-
ity to x.  In general,  

 

- maximum increase to x = minimum value with opposite parity  
(here, b = 5) 

- maximum decrease to x = minimum value with same parity      
(here, a = 8) 

- exact interval for x = [x-a, x+b]                                                  
(here, = [2, 15]) 

- width of exact interval = (b+a)                                                   
(here, = 13) 

- radius of exact interval = (b+a)/2                                               
(here, = 6.5) 

- interval midpoint = x + (b-a)/2                                                    
(here, = 8.5) 

- bias in midpoint estimate of x = (b-a)/2                                      
(here, = -1.5) 

 

CCS is based on creating cycles that 
- contain the sensitive cells X 
- collectively permit increase/decrease of x to at least (x-r(X), x+r(X)) 

- minimize information loss measured by linear cost function k k
k

a z∑  

Typically (but not necessarily) 
- a sensitive cell will be used as a complement for another cell when-

ever possible 

- complementary cells are large enough to accommodate protection 
limits r(X) 

- but as small as possible to minimize information loss 

- an alternative is to select many small cells as complements 
 

Multi-dimensional and linked tables are much more complex for CCS but each 
two-dimensional slice of such systems must comprise alternating cycles as above.  
Multiple cycles containing a sensitive cell are analyzed sequentially for purposes 
here.  Thus, we continue to focus on alternating cycles. 

5.2   Releasing Exact Intervals 

The data releaser may choose to release exact intervals [l, u] for the suppressed cells.  
Even if the releaser does not do so, the sophisticated user can compute these intervals 
independently. So, it suffices to assume that exact intervals are available.  We return 
to our working example. Again, we remind the reader that all situations are not as 
simple as this 4-element two-dimensional cycle; but, that all situations do comprise 
two-dimensional cycles that the intruder can analyze in precisely the same manner as 
we now proceed to do. 

 
    17     13  30 
     x+/-     b-/+  15 
     c-/+     a+/-  15 
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Assume for concreteness that  b < c and a < x.  By virtue of the polyhedral geome-
try of linear constraint systems, the intruder can determine the following. 

 

- l(x)  = x – a:  a of same parity as x, and l(a) = 0 
- u(x) = x + b:  b of opposite parity to x, l(b) = 0 
- intruder knows the width of the exact interval = a + b 
- if intruder can determine a or b or b-a or b/a, then x is revealed 

 

Consequently, protection on a cycle hinges on the intruder’s ability to determine a 
single quantity.  If (b-a)/(2x) is small, then the midpoint estimate is precise. Similarly, 
if A, B are not historically sensitive, then the intruder can examine historical data to 
estimate a or b or b – a or b/a, and estimate x. 

If X involves only one contributor, then 
 

 l(x)< (1-p)x and  
 (1+p)x < u(x)             
 

Consequently, 

l(x)/(1-p) < x <u(x)/(1+p)     (2) 

In addition, 

- u(x)/l(x)  > (1+p)/(1-p),  

so that 

- (u(x)-l(x)/(u(x)+l(x)) > p 

Often, contributor counts are released, so the intruder knows precisely the one con-
tributor cells.  If X involves two contributors, then the second contributor can obtain 
an analogous but sharper inequality from its cell equation by subtracting out its con-
tribution.  Typically, there are (many) one and two contributor cells, and the number 
of contributors is published, enabling identification of these cells. 

By virtue of (2), exact intervals can be “shrunk” if p is known.  It is often discussed 
as to whether the releaser should make the value of p public to enhance analyzability 
of the data.  It would appear that the answer to that question is a resounding “NO”.  
The next oft-asked question is whether the releaser should release the minimal safe 
interval (x – r(X), x + r(X)).  Again the answer is “NO” because in so doing, x = mid-
point of (x-r(X), x+r(X)) is divulged, as are r = r(X) = (x + r(X)) – (x) and p = r/x.  
Under sliding protection, viz., requiring only that the width of the protection interval 
be at least 2r(X), the second question is moot. 

If releasing p erodes protection, how well protected is the value of this parameter?  
For each one or two contributor cell X 

 

p < p(X) = (u(x)-l(x))/(u(x)+l(x)) 
   = ((u(x)-l(x))/2)/((u(x)+l(x))/2)    (3) 

= (radius/midpoint) of the protection interval for X 
 

These inequalities provide (many) upper bounds for p.  In the context of a national 
census, or a set of different censuses or censuses conducted over multiple years, many 
upper bounds (3) for p are available.  The smallest, p’ = p(X’), could be very precise. 
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A lower bound p’’ on p can be obtained via trial and error as follows. 
 

- begin with any solution (e.g,, adjusted midpoint or IPF) 
- choose p” and protect X to within p”-percent 
- if the current cycle is not selected, then p > p’’ 
- do this for each one contributor cell X 
- the largest p’’ is a lower bound for p 
 

The intruder then can obtain a tighter interval than the exact interval l < x < u: 

l < l/(1-p’’) < l/(1-p) < x < u/(1+p) < u/(1+p’’) < u   (4) 

5.3   Vulnerability of CCS under p/q-Rule and Release of Exact Intervals 

X denotes a sensitive cell under a  p/q-rule, and is suppressed with complementary 
suppressions A, B, C.  The releaser releases exact intervals in place of suppressions. 

 
           X   [lX, uX]……+/-            B   [lB, uB]       -/+ 
           C   [lC, uC]        -/+            A   [lA, uA]      +/- 

 
Assume lA, lC, lX > lB (other cases analogous). Thus, a, c, x > b.  From the polyhe-

dral geometry of linear constraints, the intruder can deduce 
 

- uX - lX = uB – lB = uA – lA= uC – lC = 2q min {a, b, c, x} = 2qb 
- lB=  (1 - q)b 
- uB= (1 + q)b 
- lA=  a - qb 
- uA= a + qb 

 

Should the releaser release the value of q? The answer is definitely “NO” because 
these equations would reveal a, b, c and x.  Indeed, it makes no difference whether or 
not the releaser reveals q, as q is in fact knowable. 
For q < 1,  

- / ( 1) /( 1)B Bu l q q= + −   
- ( ) /( )B B B Bq u l u l= − +  

Consequently,  
-  b = lB/(1 – q) 
-  a = lA + qb 
-  c = lC + qb, 
-  x = lX + qb 

Thus, release of exact intervals for a p/q-rule results in COMPLETE DISCLOSURE! 

6   Concluding Comments 

We have shown that complementary cell suppression has negative effects on both 
local and global data quality.  Attempts to mitigate these effects include 

- release the parameter p of a p-percent rule 
- release exact intervals in place of suppressions 
- release the parameter q of a p/q-rule 
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We have shown that these alternatives may seriously threaten confidentiality.  We 
have presented an approach by which the security of suppressed data may be com-
promised. The extent of these threats in practice needs to be examined, potential 
remedies need to be explored, and alternatives, such as [7], considered. 

 
Disclaimer. This work solely represents the findings and opinions of the author and 
should not be interpreted as representing the policies or practices of the Centers for 
Disease Control and Prevention or any other organization or group. 
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Abstract. A pre-processing optimisation is proposed that can be
applied to the integer and mixed integer linear programming models
that are used to solve the cell suppression problem in statistical disclo-
sure control. In this paper we report our initial findings which confirm
that in many situations the pre-processing optimisation can considerably
reduce the resources required by the solver hence allowing either statis-
tical tables to be protected quicker, or larger statistical tables to be
protected. This pre-processing optimisation may be suitable for applica-
tion to the τ -Argus Optimal Method used in protecting statistical tables.

Keywords: Statistical Disclosure Control, Cell Suppression Problem,
Classical Model, Pre-processing Optimisation, External Attacker.

1 Introduction

Many statistical tables are published with some of the table cells suppressed
(left blank). This is done to prevent the disclosure of individual respondents
which contributed to the cell value. Cells that failed the primary rule are called
primary, or sensitive, cells and must be protected by additional suppressed cells
called secondary cells. Choosing which secondary cells to suppress is known, in
the literature, as the cell suppression problem. The cell suppression problem
involves choosing a set of secondary cells that will remove the risk of disclosing
the values of the primary cells whilst also minimising the information loss from
the published statistical table.

The cell suppression problem is a member of the class of NP-hard problems
when solving for optimality. In fact, the problem of finding a secondary suppres-
sion pattern is easy to be achieved, for example if all cells are suppressed this is
a feasible pattern but clearly not optimal. It is when solving the cell suppression
problem optimally that as the size of the table to be protected grows the number
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of possible solutions that need to be evaluated grows much quicker. For a table
with n cells there are 2n possible suppression patterns. Because of the very large
number of constraints that define the cell suppression problem MIP techniques
can only find the optimal solution for small and medium sized statistical tables.

It is known that removing anything that is redundant from the mathematical
program can make an efficiency gain. For example redundant equations, variables
and protection levels can be removed. Another pre-processing efficiency gain can
be obtained by removing any table cells that have the value set to zero or whose
values must be published, subject to adjusting any marginal totals necessary. This
decreases the number of working variables and constraints that the solver requires
to find a solution, which in turn allows larger statistical tables to be protected.

Linear programming models and local search algorithms are used on relaxed
cell suppression problems to obtain near optimal solutions when integer program-
ming models are infeasible. Some have moved away from trying to calculate the
optimal solution and have instead employed heuristic techniques to find near op-
timal solutions quickly. Others have employed hybrid algorithms that combine
linear programming and heuristic techniques [2] [9].

This paper will present further improvements which are obtained when looking
at the inferences made by an external attacker to a table. Section 2 presents def-
initions to the problem. Section 3 puts forward a conjecture for a pre-processing
optimisation. Section 4 describes how the pre-processing optimisation can be im-
plemented. Section 5 applies the pre-processing optimisation to the classical IP
model for SDC. Section 6 describes our experimental setup. Section 7 contains
our results. Section 8 contains our preliminary conclusions and section 9 lists
further research.

2 Definitions

The external attacker wishes to deduce the values of cells that have been
suppressed in a published statistical table, in order to glean confidential infor-
mation. The assumption made in the literature is that the external attacker has
only the knowledge which is provided in the published table, i.e. he is not aware
which suppressed cells are primary nor secondary but he knows that there is a
number of suppressed cells in the table and their location (disclosure pattern). As
each table has row and column totals, often referred to as marginals, the external
attacker is able to calculate lower and upper bounds, feasibility range, for each of
the suppressed cells by solving a set of linear constraint equations [1] [7].

A statistical table with marginal totals can be represented as a set of cells,
please see details of the model in [1] and [7], ai, i = 1, ..., n, satisfying m lin-
ear constraint equations such that Ma = 0, where Mij has one of the values
{0, +1,−1}.

n∑
i=1

Mijai = 0, j = 1, ..., m

The statistical agency will define a set P of primary cells whose publication will
be suppressed in order to protect the confidentiality of the contributors to those
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cells. The statistical agency will provide lower and upper protection levels (lpl
and upl) for each cell in P such that an external attacker must not be able to
calculate ap within the range lplp to uplp. For ap to be safe

ap ≤ lplp and ap ≥ uplp

where ap is the lower bound and ap the upper bound of the feasible range that
the external attacker can calculate for ap if only the primary cells P have been
suppressed [1].

ap = min xp ap = max xp

s.t. Mx = 0 and s.t. Mx = 0
xi ≥ 0, i ∈ P xi ≥ 0, i ∈ P
xi = ai, i /∈ P xi = ai, i /∈ P

If the external attacker is able to calculate ap > lplp or ap < uplp then ap is
unsafe (ap can be disclosed). It should be noted that we are considering the
external attacker on tables which have not yet been protected by secondary
suppressed cells in order to gauge the level of disclosiveness of the tables for our
pre-processing optimisation.

| | | | |
0 lplp ap uplp ∞

ap ≤ lplp lplp < ap ap < uplp uplp ≤ ap

ap is safe ap is unsafe ap is unsafe ap is safe

Noting that some primary cells may occur alone in a marginal total, whereas
others (e.g. those sharing rows/columns) may effectively protect each other, we
define the following partition of the set of primary cells P .

An exposed primary cell in a statistical table with marginal totals is one whose
value can be calculated, within a given lower and upper protection limit, by an
external attacker when only the primary cells P have been suppressed. That
is to say, p is a member of the set E of exposed primary cells if ap > lplp or
ap < uplp. E ⊆ P .

A not exposed primary cell in a statistical table with marginal totals is one
whose value cannot be calculated, within a given lower and upper protection
limit, by an external attacker when only the primary cells P have been
suppressed. That is to say, p is a member of the set N of not exposed pri-
mary cells if ap ≤ lplp and ap ≥ uplp. N ⊆ P , E ∪ N = P and E ∩ N = {}.
The reason why there may be not exposed primary cells in a statistical table
is due to their locations in that table. Each not exposed primary cell receives
sufficient protection from other primary cells in the table to prevent an external
attacker from being able to calculate a feasible range of values within the given
protection level.

Proposition 1. As not exposed primary cells are already sufficiently protected
they do not require secondary cells for their protection.
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Proof. Follows by definition of N .

An initially exposed primary cell is a primary cell that can be exposed, by an exter-
nal attackerwhenonly the primary cellsP have been suppressed, without requiring
the exposure of any other primary cell. For example there may be only one primary
cell in a row or column. Let Lp be the subset of linear equations M that contain
the value +1 or −1 in the locations for ap, Lp ⊆ M . This subset Lp only contains
the linear equations that apply to ap. Then we can say that p is a member of the
set I of initially exposed primary cells if ap > lplp or ap < uplp, when,

ap = min xp ap = max xp

s.t. Lpx = 0 and s.t. Lpx = 0
xi ≥ 0, i ∈ P xi ≥ 0, i ∈ P
xi = ai, i /∈ P xi = ai, i /∈ P

I ⊆ E.
Conversely we can say that p is not a member of I if ap ≤ lplp and ap ≥ uplp.
A consequentially exposed primary cell is an exposed primary cell that is not

an initially exposed primary cell. That is to say, p is a member of the set C of
consequentially exposed primary cells if p is a member of E but not a member of
I. C ⊂ E, C ∪ I = E and C ∩ I = {}. Hence a consequentially exposed primary
cell is only vulnerable to an external attacker when at least one other exposed
primary cell has been exposed. In other words, we defined I by considering
only the submatrix L of consistency equations directly involving the cells in
I. In contrast, consequentially exposed primary cells are those that, if only P
is suppressed, may be exposed as a result of considering all of the consistency
equations in matrix M . When an external attacker has exposed a primary cell
it was for one of two reasons, the cell was either initially or consequentially
exposed. If I = {} then both C = {} and E = {}.

3 Conjecture

In order to make a published statistical table safe from an external attacker
only the initially exposed primary cells, I, need to be protected by suppressing
secondary cells. Again, the proof follows by our definitions of I, C and N .

It is worth noting that even if it makes great improvements in some cases, this
pre-processing stage does not change the NP-hard nature of the cell suppression
problem, since in the worst case I = P , and we also now have to solve the
problem of finding I.

A Corollary to this conjecture is that if I = {} then N = P and therefore the
statistical table is already adequately protected.

4 Finding Initially Exposed Primary Cells without Using
a Solver

We present here a method that provides a superset of the elements in P that
contains all those in I.



28 M. Serpell et al.

Let Q be the set of cells that are not in P , these cells do not require protection.
Let

cj =
∑
i∈Q

Mijai, j = 1, ..., m

then,
cj +

∑
i∈P

Mijai = 0, j = 1, ..., m

A necessary condition for us to establish that p ∈ I is the existence of at least one
constraint equation in which the amount of ”uncertainty” (and hence protection)
provided by the given lower and upper protection levels of the other suppressed
primary cells in that constraint equation is less than the required protection
limits for p. For each element p ∈ P let J denote the set of linear constraint
equations (equivalent to rows of M) in which p participates, i.e. ∀j ∈ J ·Mpj �= 0.
For each j ∈ J let Hj be the set of primary cells in j. For each p ∈ P ,

a′
p = maxj∈J (−cj −

∑
i∈Hj/p

Mijupli)

a′
p = minj∈J (−cj −

∑
i∈Hj/p

Mij lpli)

Then we can say that p is a candidate member of the set I of initially exposed
primary cells if a′

p > lplp or a′
p < uplp. The set of candidate members of I contains

the set I. This is because the values of ap and ap that the external attacker can
calculate can not be better than a′

p and a′
p, but are likely to be worse.

ap ≤ a′
p and ap ≥ a′

p

This is shown pictorially, for the lower protection level, in tables 1, 2 and 3.

4.1 Example

Taking a 6 by 6 statistical table with marginal totals (Table 4) as an example, the
process of finding I, C and N can be shown. In our example the statistical agency
has defined P = {8, 12, 15, 16, 19, 20, 24, 27}. When the test for the fully exposed
primary cells is applied five primary cells are exposed, E = {16, 19, 20, 24, 27}
and therefore N = {8, 12, 15}. The values of cells 16, 20, 24 and 27 are calculated
exactly and the feasibility range of cell 19 is calculated within its lower and upper
protection levels which in this case is 10% of the cell’s value.

By contrast applying the test for initially exposed primary cells (Table 5) we
find that I = {16, 19, 24, 27}, and therefore N ∪ C = {8, 12, 15, 20}. For this
pre-processing optimisation to work it is not necessary (nor is it possible) to
determine which cell is in C and which is in N .

Applying a SAS/OR implementation of the classical IP SDC model to the
whole set of primary cells in table 4 the set of secondary cells S = {37, 38, 40}was
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Table 1. As ap ≤ lplp, p is not a member of I . As a′
p ≤ lplp, p is not a candidate

member of I .

| | | | | | |
0 ap a′

p lplp ap uplp ∞

Table 2. As ap ≤ lplp, p is not a member of I . As lplp < a′
p, p is a candidate member

of I .

| | | | | | |
0 ap lplp a′

p ap uplp ∞

Table 3. As lplp < ap, p is a member of I . As lplp < a′
p, p is a candidate member of I .

| | | | | | |
0 lplp ap a′

p ap uplp ∞

Table 4. As lplp < ap, p is a member of I . As lplp < a′
p, p is a candidate member of I .

Total 1 2 3 4 5 6

Total 1472 193 278 203 294 233 271

A 199 8 9 1 51 41 47 12 3 1 48

B 164 15 8 2
16 1 1 54 44 19 45 2

20 12 2

C 245 8 70 24 6 2 76 64 27 21 2

D 248 33 46 45 27 37 60

E 312 87 51 18 35 49 72

F 304 48 59 39 65 35 58

Table 5. Workings to find members of the superset of I. Any primary cell that is at
risk of having it’s protection range violated is a member of the superset of I.

Protection
Cell range a′

p a′
p Protected

8 8 to 10 8 10 Yes

12 2 to 4 2 4 Yes

15 7 to 9 7 9 Yes

16 0 to 2 1 1 No

19 40.5 to 49.5 44 46 No

20 10.8 to 13.2 9.9 14.1 Yes

24 5 to 7 6 6 No

27 18.9 to 23.1 19.8 22.2 No
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obtained. The solver required 833 variables, 1824 constraints and 23.28 seconds
of cpu time to protect table 4.

Applying a SAS/OR implementation of the modified classical IP SDC model
to only the initially exposed primary cells, I = {16, 19, 24, 27}, in table 4 the set
of secondary cells S = {37, 38, 40} was also obtained. The solver required 441
variables, 916 constraints and 12.26 seconds of cpu time to protect table 4.

5 Applying the Conjecture to the Classical IP Model for
SDC

The cell suppression problem is the problem faced by statistical agencies when
they release statistical tables, they must balance the risk of disclosing confiden-
tial information against the loss of information from the table caused by not
publishing the suppressed cells in the table [3] [4] [5] [6] [8] [9].

Here we consider the case of a single external attacker who has no other knowl-
edge than what is in the published table. It is usually assumed that the external
attacker, prior to attack, knows that the cell ai lies within the range from lbi to
ubi. If the external attacker has no other knowledge than that published in the
table then lbi = 0 and ubi = ∞. Kelly et al [6], when they defined the classical
model, introduced a weighing wi for each cell ai to represent the information loss
should the cell ai be suppressed. A variable zi was introduced for each ai to in-
dicate whether or not ai had been suppressed (zi = 0 means that ai is published
and zi = 1 means that ai is suppressed). Two tables where introduced that are
consistent with a = [a1, ..., an], these tables fp = [fp

1 , ..., fp
n] and gp = [gp

1 , ..., gp
n]

are used to calculate the lower and upper feasible limits for p ∈ P . In the classi-
cal model the lower and upper bounds (lbi and ubi) are translated into LBi and
UBi, where LBi = ai − lbi and UBi = ubi − ai. Those cells that are suppressed
and are members of P are called primary suppressed cells and those cells that are
suppressed but are not members of P are called secondary suppressed cells.

5.1 Classical Model

min
∑n

i=1 wizi

subject to

zi ∈ {0, 1} for i = 1, ..., n

and for all p ∈ P :∑n
i=1 Mijf

p
i = 0 for j = 1, ..., m

ai − LBizi ≤ fp
i ≤ ai + UBizi for i = 1, ..., n∑n

i=1 Mijg
p
i = 0 for j = 1, ..., m

ai − LBizi ≤ gp
i ≤ ai + UBizi for i = 1, ..., n

fp
p ≤ lplp

gp
p ≥ uplp

gp
p − fp

p ≥ splp
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5.2 Modified Classical Model

Applying conjecture in this paper we derived the Classic Model from Kelly et al
as follows:

min
∑n

i=1 wizi

subject to

zi ∈ {0, 1} for i = 1, ..., n

zp = 1 for all p ∈ P

and for all p ∈ I(initially exposed primary cells) :∑n
i=1 Mijf

p
i = 0 for j = 1, ..., m

ai − LBizi ≤ fp
i ≤ ai + UBizi for i = 1, ..., n∑n

i=1 Mijg
p
i = 0 for j = 1, ..., m

ai − LBizi ≤ gp
i ≤ ai + UBizi for i = 1, ..., n

fp
p ≤ lplp

gp
p ≥ uplp

gp
p − fp

p ≥ splp

Table 6. Range of statistical tables with marginal totals

Table Rows Columns Cells Zeros Primary Initially Constraint Hierarchical
Cells Exposed Equations

1 5 5 36 3 8 6 12 No

2 5 6 42 7 8 3 13 No

3 5 7 48 5 7 4 14 No

4 5 8 54 8 17 3 15 No

5 5 9 60 5 17 4 16 No

6 7 7 64 11 14 5 16 No

7 7 8 72 7 16 5 17 No

8 7 9 80 19 13 5 18 No

9 8 8 81 13 13 7 18 No

10 8 9 90 15 17 5 19 No

11 10 10 121 19 31 4 22 No

12 10 12 143 28 40 4 24 No

13 25 5 156 5 4 4 32 No

14 25 5 156 6 11 8 32 No

15 25 5 156 7 4 4 32 No

16 25 5 156 32 7 7 32 No

17 25 5 156 35 7 4 32 No

18 25 5 156 26 9 9 32 No

19 25 5 156 7 11 10 32 No

20 50 5 300 9 25 18 56 No
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Fig. 1. Percentage Improvement in Number of Variables needed by SAS/OR, the Num-
ber of Constraints needed by SAS/OR and the CPU Time needed by SAS/OR by the
Percentage Reduction in Primary Cells Considered.

6 Experimental Setup

6.1 Comparing the Classical and Modified Classical Models

A set of 20 2-dimensional non-hierarchical magnitude statistical tables with
marginal totals (see Table 6) were generated for the purpose of comparing the
classical and modified models [9]. These statistical tables with marginal totals
were protected using a SAS/OR implementation of the classical model and a
SAS/OR implementation of the modified (initially exposed primary cells only)
classical model, using the same computer. These experiments were ran at ONS
on a Dell Optiplex GX270 processor with 2GB RAM. The SAS version used was
SAS 9 solver with SAS/OR Opt module. There are a variety of solvers in SAS
and OptMILP was used. The selected secondary suppressed cells, the number
of variables required, the number of constraints and the required cpu-time were
recorded for comparison. For each of the statistical tables the percentage change
in performance was calculated using the following formula.

ReductionInCellsConsidered =
(SensitiveCells − InitiallyExposedCells) ∗ 100

SensitiveCells

ImprovementInV ariables =
(ClassicalV ariables − ModifiedV ariables) ∗ 100

ClassicalV ariables
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Fig. 2. The Percentage Reduction in Primary Cells Considered by the Number of Cells
in the Table

ImprovementInConstraints =
(ClassicalConstraints − ModifiedConstraints) ∗ 100

ClassicalConstraints

ImprovementInCPUTime =
(ClassicalCPUTime − ModifiedCPUTime) ∗ 100

ClassicalCPUTime

For each of these statistical tables the improvement in the number of variables,
constraints and cpu time was plotted against the reduction in the number of
primary cells needing to be considered, see Fig. 1.

6.2 Estimating the Improvement for Different Table Sizes

A set of 3360 2-dimensional non-hierarchical statistical tables with marginal
totals, sizes ranging from 100 cells to 900,000 cells, were generated with random
values. For each different table size; 40 tables were generated, these tables had
either 10% or 25% primary cells and either 10% or 20% of cells set to zero. For
each of these tables the percentage reduction in the number of primary cells
that need to be considered when using the modified classical model was plotted
against the table size, see Fig. 2.
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7 Results

7.1 Comparing the Classical and Modified Classical Models

Both models, classical and modified, selected the same secondary cells to sup-
press. The number of variables required, the number of constraints and the
required cpu-time for each model is recorded in Table 7.

For every percentage reduction in the number of primary cells that need to
be considered when using the modified classical model to protect a published
statistical table there is an equal percentage improvement in the number of vari-
ables and constraints required to solve the associated linear programme. There
is also a similar improvement in the required cpu time, however the relationship
is not as smooth as it is for the number variables and constraints required, see
Fig. 1. For those statistical tables where all of the primary cells are initially
exposed, P = I, the modified classical model may require more cpu time than
the classical model.

7.2 Estimating the Improvement for Different Table Sizes

The reduction in the number of primary cells that needed to be considered when
using the modified classical model was affected by some of the properties of the

Table 7. Comparison of the two models

Table Classical Modified
Variables Constraints cpu-time Variables Constraints cpu-time

(seconds) (seconds)

1 612 1376 4.32 468 1034 2.95

2 714 1584 3.71 294 599 1.32

3 720 1568 8.17 432 899 2.43

4 1890 4250 4.07 378 764 0.6

5 2100 4692 4.17 540 1117 0.98

6 1856 4088 8.31 704 1469 2.39

7 2376 5216 31.07 792 1641 4.62

8 2160 4680 113.78 880 1808 27.48

9 2187 4732 38.23 1215 2554 24.65

10 3150 6834 84.81 990 2022 6.98

11 7623 16492 95.56 1089 2155 2.57

12 11583 24960 256.65 1287 2532 5.98

13 1404 2768 4.82 1404 2768 4.86

14 3588 7612 78.46 2652 5539 62.9

15 1404 2768 31.57 1404 2768 31.7

16 2340 4844 18.07 2340 4844 29.82

17 2340 4844 22.67 1404 2771 8.45

18 2964 6228 267.31 2964 6228 267.31

19 3276 6921 2.23 3276 6921 2.2

20 15300 32900 110.70 11100 23695 45.96
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Table 8. Percentage Reduction in Primary Cells Considered, the Number of Variables
needed by SAS/OR, the Number of Constraints needed by SAS/OR and the CPU
Time needed by SAS/OR

Reduction Improvement Improvement Improvement
Table in Cells in in in

Considered Variables Constraints CPU Time

1 25 23.52 24.85 31.71

2 62.5 58.82 62.18 64.4

3 42.86 40 42.67 70.26

4 82.35 80 82.02 85.26

5 76.47 74.29 76.19 76.5

6 64.29 62.07 64.07 71.24

7 68.75 66.67 68.54 85.13

8 61.54 59.26 61.37 75.85

9 46.15 44.44 46.03 35.52

10 70.59 68.57 70.41 91.77

11 87.1 85.71 86.93 97.31

12 90 88.89 89.86 97.67

13 0 0 0 -0.83

14 27.27 26.09 27.23 19.83

15 0 0 0 -0.41

16 0 0 0 -65.02

17 42.86 40 42.80 62.73

18 0 0 0 0

19 9.09 0 0 1.35

20 28 27.45 27.98 58.48

statistical tables being protected. The reduction was greater for larger tables,
tables that were more square than long and tables that had a higher proportion
of primary cells. This is explained by each factor increasing the probability that
more than one primary cell would occupy the same row or column and hence
provide some protection to each other.

8 Conclusions

This pre-processing optimisation has been shown to be very effective when ap-
plied to the classical IP SDC model developed by Kelly et al [6]. This optimisa-
tion works by reducing the resources that the solver requires to protect statistical
tables, hence allowing statistical tables to be protected quicker or allowing larger
statistical tables to be protected. The classical IP SDC model has been imple-
mented, as the Optimal Method, in the SDC tool, τ -Argus [5] [10]. It may be
the case that this pre-processing optimisation could be applied to the τ -Argus
Optimal Method to enable it to handle larger tables.
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9 Further Research

Our current means of finding candidate members of I will find all the mem-
bers of I, but will also include some members of C and N . Hence we need to
find better techniques to identify members of I that do not require the use of
a solver. As using the classical IP SDC model to protect large tables is still
problematic we need to find other improvements that can be combined with
this pre-processing optimisation. Our experiments involved statistical tables of
various shapes and sizes; however an investigation needs to be carried out to
see how the properties of the statistical tables affect the amount of improve-
ment that this pre-processing optimisation provides. Our experiments did not
include hierarchical statistical tables. How hierarchical statistical tables affect
the amount of improvement that this pre-processing optimisation provides re-
quires investigation. This pre-processing optimisation should be applied to other
SDC techniques to see if similar performance improvements can be obtained.
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Abstract. The software package τ-ARGUS offers a very efficient algorithm for 
secondary cell suppression known as either HiTaS or the Modular approach. 
The method is well suited for the protection of up to 3-dimensional hierarchical 
tables. In practice, statistical agencies release multiple tabulations based on the 
same dataset. Usually these tables are linked through certain linear constraints. 
In such a case cell suppressions must obviously be coordinated between tables. 
In this paper we investigate into the possibilities for an extension of the modular 
approach to deal with linked tables. 

1   Introduction 

Some cells of the tabulations released by official statistics contain information that 
chiefly relates to single, or very few respondents which may often be easily identifi-
able. Therefore, traditionally, statistical agencies suppress part of the data, hiding 
some table cells from publication. Efficient algorithms for cell suppression are offered 
e.g., by the software package τ-ARGUS [6]. 

When tables are linked through simple linear constraints, cell suppressions must 
obviously be coordinated between these tables. A frequently occurring instance of a 
set of linked tables, consists of tables that share some of their marginal cells. E.g., 
tables specified in Eurostats SBS-regulation: a table on turnover broken down by 4-
digit NACE, a second table on turnover broken down by 3-digit NACE and size class 
and a third table on turnover broken down by 2-digit NACE and geographic location 
(NUTS). These tables obviously have some marginal cells in common. 

The intention of this paper is to present a collection of several alternative ap-
proaches for this coordination problem, and to give an idea of the issues that have to 
be considered for a decision which of the approaches (if any) should eventually get 
implemented in τ-ARGUS within the framework of a current joint European coopera-
tion project. 
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Considering correctly the links between tables in the cell suppression process leads 
to a substantial increase in problem complexity. This tends to lead in turn to substan-
tial increase in the amount of information that will be suppressed. One way of avoid-
ing at least part of this increase may be to improve certain mechanisms in the current 
heuristics of the Modular method which cause overprotection in some situations. 
Section 4.1 proposes an idea for how to improve current heuristics. 

2   Methodological Background 

Statistical offices collect information on several properties that might be used for 
grouping respondents, like e.g. information about respondent economic activity 
(NACE) and geographic location. While with modern technologies it is no problem 
anymore to generate any kind of tables, or, by means of data-warehousing systems, to 
allow users to construct their own tabulations, solving the corresponding disclosure 
control problems consistently by means of secondary cell suppression can hardly be 
achieved in full generality because of the problem of coordinating suppressions across 
linked tables. [3] has described a special class of linked tables and presented an idea 
for an extension of the current methodologies to deal with sets of linked tables be-
longing to this class. This class of linked tables includes the linked tables as specified 
in the SBS-regulation of Eurostat. 

The next subsection will first introduce some definitions and denotations which we 
will use throughout the paper with respect to hierarchical and linked tables structures. 
Subsection 2.2 briefly describes the original modular method (a.k.a. HiTaS). Finally, 
in subsection 2.3 we will discuss four possible approaches to deal with sets of linked 
tables. 

2.1   Definitions and Denotations 

In the terminology of tabular data statistical disclosure control, we think of an m-
dimensional table as a tabulation of a certain continuous response variable by a cross 
combination of m categorical spanning variables.  

[3] has introduced some denotation on hierarchical structures between the catego-
ries of spanning variables taken from graph theories. We follow this denotation in this 
paper and consider a hierarchy to be a rooted, directed tree, with the categories being 
the vertices of the tree. Additionally we define: 

 

• A relation is a hierarchy consisting of only one father vertex and the cor-
responding child vertices.  

• A table given as a cross combination of relations (R1 r … r Rm) is called a 
simple table. Note that this kind of table is often referred to as ‘non-
hierarchical’ or ‘unstructured’. 

• If G is the covering hierarchy of a set of relations {R1,…,Rk} then we say 
that {R1,…,Rk} is a simple breakdown of G.  

• The level of a relation Rj in a simple breakdown of a hierarchy G is the 
level of the root of Rj in G.  
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• Without loss of generality, we define the level of R1 to be 0. Note that for 
any j > 1 the root category of Rj is also a category of Rl for some l ≠ j. We 
then say that Rj and Rl are linked. 

 

Consider an m-dimensional table T given as (G1 r …r Gm). Let }{ 1
i
k

i
i

R,...,R  denote 

the simple breakdown of G i. The breakdown of table T into simple (sub)tables is then 
given as the set S(T) of up to m-dimensional simple tables 

mjjjT ...21
. Each of the sim-

ple tables 
mjjjT ...21

 is given as cross combination of relations )( 21
21

m
jjj m

R...RR ×××  

with 1 ≤ ji ≤ ki . Because some of the i
ji

R  are linked, some of the tables 
mjjjT ...21

 in the 

set S(T) are linked, i.e., they share identical cells. 

2.2   The Original Modular Approach for Dealing with Hierarchical Tables 

The disclosure risk connected to each individual cell of a table is assessed by applying 
certain sensitivity rules. If a cell value reveals too much information on individual 
respondent data, it is considered sensitive, and must not be published. We consider 
this to be the case, if the cell value could be used, in particular by any of the respon-
dents, to derive an estimate for a respondent’s value that is closer to the reported 
value of that unit than a pre-specified percentage p (this sensitivity rule is called the 
p% rule).  

Cell suppression comprises of two steps. In a first step, sensitive cells will be sup-
pressed (primary suppressions). In a second step, other cells (so called secondary 
suppressions) are selected that will also be excluded from publication in order to pre-
vent the possibility that users of the published table would be able to recalculate pri-
mary suppressions. Naturally, this causes an additional loss of information. 

By solving a set of equations implied by the additive structure of a statistical table, 
and some additional constraints on cell values (such as non-negativity) it is possible to 
obtain a feasibility interval, i.e., upper and lower bounds for the suppressed entries of 
a table, c.f. [4], for instance. A set of suppressions (the ‘suppression pattern’) is called 
‘valid’, if the resulting bounds for the feasibility interval of any sensitive cell cannot 
be used to deduce bounds on an individual respondent’s contribution that are too close 
according to the criterion employed to assess cell sensitivity. This requires that the 
bounds of the feasibility interval for any sensitive cell are at a ‘safe’ distance from its 
true value. Safe distance means that the distance exceeds the so called protection 
level, c.f. [7, 4.2.2]. 

The problem of finding an optimum set of suppressions known as the ‘secondary 
cell suppression problem’ is to find a feasible set of secondary suppressions with a 
minimum loss of information connected to it. The ‘classical’ formulation of the sec-
ondary cell suppression problem leads to a combinatorial optimization problem, 
which is computationally extremely hard to solve. For practical applications, the for-
mulation of the problem must be relaxed to some degree. 

The modular approach for hierarchical table cell suppression (also called HiTaS, 
see [2] for a detailed description) subdivides a hierarchical table T into the corre-
sponding set S(T) of simple, ‘unstructured’ linked (sub-)tables. The cell suppression 
problem is solved for each subtable separately. Within each subtable, methods based 
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on Fischetti/Salazar Linear Optimization tools [4] are used to select secondary sup-
pressions. For the co-ordination of secondary suppressions between linked subtables a 
backtracking procedure is used: the modular approach deals with the tables in S(T) in 
a special, ordered way. During processing it notes any secondary suppression belong-
ing also to one of the other tables. It will then suppress it in this table as well, and 
eventually repeat the cell suppression procedure for this table. 

It must however be stressed, that a backtracking procedure is not global according 
to the denotation in [1]. See [1] for discussion of problems related to non-global 
methods for secondary cell suppression. 

2.3   Extension of the Modular Approach for Dealing with Linked Tables 

[3] presents an idea to extend the current methodologies to deal with a set of linked 
tables {T1,…,TN} that satisfy certain criteria. For instance, it is assumed that each 
table has a hierarchical structure that may differ from the hierarchical structures of the 
other tables. However, it is also assumed that tables that use the same spanning vari-
ables only have hierarchies that can be covered by a single hierarchy for that spanning 
variable. See [3] for the definition of a covering hierarchy. In essence it means that 
the covering hierarchy is such that all related hierarchies can be viewed as sub-
hierarchies. 

In the context of pre-planned table production processes which are typically in 
place in statistical agencies for the production of certain sets of pre-specified standard 
tabulations, it is normally no problem to satisfy these conditions. Literally speaking, 
the assumption is that tables in a set of linked tables may present the data in a break-
down by the same spanning variable at various amount of detail. But only under the 
condition that, if in one of the tables some categories of a spanning variable are 
grouped into a certain intermediate sum category, during SDC processing this inter-
mediate sum category is considered in any other table presenting the data in a break-
down of the same spanning variable and at that much detail. 

The idea of [3] is then as follows. For N tables {T1,…,TN} that need to be protected 
simultaneously, suppose that the specified tables contain M different spanning vari-
ables. Since the hierarchies are supposed to be coverable, an M-dimensional table 
exists having all the specified tables as subtables. The spanning variables will be 
numbered 1 up to M. 

Each spanning variable can have several hierarchies in the specified tables. Denote 

those hierarchies for spanning variable i by i
I

i
i

H,...,H 1  where Ii is the number of dif-

ferent hierarchies. 
Define the M-dimensional table by the table with spanning variables according to hi-

erarchies G1,…,GM such that, for each i = 1,..., M hierarchy Gi covers the set of hierarchies 

{ i
jH } with j = 1,…, Ii. This M-dimensional table will be called the cover table. 

We will now describe several approaches to deal with this set of linked tables. 

Complete Modular Approach 
A straightforward approach would be to protect the complete cover table. HiTaS deals 
with all possible simple (‘non-hierarchical’) subtables of a hierarchical table in a 
specially ordered way. This would take care of all links between the tables in the set 
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{T1,…,TN} , since by definition these tables are subtables of this cover table. This 

would result in a set of N protected tables { P
N

P TT ,,1 K }. However, this approach 

considers a table structure which is much more complex than that of the tables which 
actually get published. We expect that this will tend to lead to a substantial increase in 
information loss compared to the other methods. Moreover, primary suppressions at 
low levels of a hierarchy often lead to secondary suppressions at the higher levels. 
Hence, unsafe cells in detailed tables that will not be published, might lead to secon-
dary suppressions in less detailed tables that will be published. These secondary sup-
pressions may be considered to be superfluous. This is probably not acceptable to 
users, given that the actual disclosure risk caused by ignoring subtables that are not 
foreseen for publication during disclosure control is likely to be rather low. 

Adapted Modular Approach  
The modular approach of HiTaS can easily be adapted. The idea is now basically to 
use the modular approach on the cover table TC, but only consider those subtables that 
are also subtables of at least one of the specified tables T1,…,TN and disregard the 
other subtables. In the following we denote this subset of S(TC) (the breakdown of 
cover table TC into subtables) as S*(TC). This approach was suggested in [3] as well. 

In τ-ARGUS the original modular approach is limited to hierarchical tables with up 
to three dimensions. This is mainly due to the fact that the Fischetti/Salazar Linear 
Optimization tools get too slow when dealing with higher dimensional tables. For the 
Adapted Modular Approach this restriction can be weakened. In theory there is no 
restriction on the number of dimensions of the cover table TC, as long as each 
(sub)table that needs to be protected is at most three dimensional.  

Linked Subtables Modular Approach 
This somewhat more complex approach deals with sets of linked, simple subtables at 
a time. For each table Ti construct the set of linked subtables S(Ti). Then consider the 
ordering used in HiTaS to order each set S(Ti). Then deal with subtables from S(Ti), 
…, S(TN) that are on the same order-level as linked tables using Fischetti/Salazar 
Linear Optimization tools. Such a set of linked subtables on the same order level is 
constructed in the following way: Let U and V be two simple subtables in S*(TC). 
Assume U is a ν-dimensional (simple) table, where the first n spanning relations of U 
are not at level 0 of the corresponding covering hierarchies, i.e., U can be represented 

as )......(: 1
1

1
1

1

vnn
ii n

U RRRR ×××××= + . Then the subtable V belongs to the same set 

of linked subtables, if it is based on the same first n spanning relations as U, i.e., if it 

can be stated as )......(: 11
1

1

lnjnn
ii n

V ++ ×××××= RRRR  for some 0≥≥≥ jlM  

where M is the dimension of the cover table TC. 
If all spanning relations of U are at level 0, i.e., n = 0, then the condition is that U 

and V share at least one level-0 spanning relation which can be expressed formally by 
requiring j = 1. 

Traditional Approach 
Although HiTaS cannot (yet) deal with linked tables, statistical agencies using HiTaS 
for secondary suppression of single tables must somehow solve the co-ordination 
problem. One possible approach is discussed in [7, 4.3.3]. This ‘traditional’ method is 
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based on the idea of a backtracking procedure on the table level instead of on the sub-
table level. 

In case of two linked tables T1 and T2, the approach would be as follows: 
 

1. Protect table T1 on its own; 
2. Each cell in T2 that is also present in T1 will get the status (i.e., suppressed 

or not-suppressed) of the cell in the protected table T1; 
3. Table T2, with the additional suppressions carried over in step 2, is pro-

tected on its own. 
4. Each cell in T1 that is also present in T2 will get the status of the cell in the 

protected table T2; 
5. Repeat step 1 – 4 until no changes occur in protecting table T1 nor in pro-

tecting T2. 
 

Graphically this would look like Figure 1. 

Protect T1 Carry pattern 
over to T2 Protect T2 Carry pattern 

over to T1

Repeat until no change in pattern of T1 and T2 
 

Fig. 1. Graphical representation of iteratively protecting two linked tables 

Adding a third table to the set of linked tables, i.e., considering {T1, T2, T3}, adds 
some complexity to this procedure. In that case several schemes can be thought of. E.g., 

 

a. Protect T1, carry pattern over to T2, protect T2, carry pattern over to T3, 
protect T3, carry pattern over to T1, repeat until no changes are added. 

b. Protect T1, carry pattern over to T2, protect T2, carry pattern over to T1, 
protect T1, repeat until no changes in {T1, T2}, carry patterns over to T3, 
protect T3, carry pattern over to T1 and T2, start with T1 again. Repeat until 
no changes in T1, T2 and T3. 

 

The choice to be made may depend on the structure of the links between the tables 
T1, T2 and T3. Obviously, the more linked tables need to be considered simultane-
ously, the more schemes can be constructed. 

3   Illustrative Examples 

In this section we will demonstrate the different approaches explained in the previous 
section using some instructive examples. 

Example 1 
We first consider a very simple instance of two linked tables. The specification of the 
two tables involves three spanning variables F, G and H, where F and H each consist 
of one relation only. The first table is given as G2 r F, the second table as G1 r F r H. 
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The simple breakdown of G1 consists of three relations, GR 1 , GR 2  and GR 3 , where 
GR 2  and GR 3  are at level 1. The simple breakdown of G2 is given by ( GR 1 , GR 2 , GR 3 , 
GR 4 , …, GR 20 ) where GR 4  to GR 10  are at level 1 and GR 11  to GR 20  are at level 2. So G1 

is a pure subhierarchy of G2, and therefore G2 is the covering hierarchy for variable G. 
The set S*(TC) of subtables of the cover table TC that are also subtables of T1 or T2, 

is then given by { GR i  r F r H, with i = 1, …, 4} U { GR i  r F, with i = 5, …, 20}. 

According to the Adapted Modular Approach, we deal with these subtables succes-
sively within the usual backtracking strategy of HiTaS. The Linked Subtables Modu-
lar Approach is in this simple instance identical to the Adapted Modular Approach.  

For the traditional approach we start with the first table G2 r F, use HiTaS for sec-
ondary suppression, carry the secondary suppressions from the area where both tables 

overlap, i.e., { GR i  r F, with i = 1, …, 4}, over to the second table G1 r F r H, do 

secondary suppression with HiTaS, and carry new secondary suppressions in { GR i  r 

F, with i = 1, …, 4} over to the first table. In the instance the first table could then be 

processed successfully without selecting any new secondary suppressions in { GR i  r 

F, with i = 1, …, 4} and thus the process finished successfully. 
The results are summarized in Table 1. For a more detailed presentation of the re-

sults see Table 2 in the appendix. 
The table G2 r F contained 72 primary unsafe cells, 26 empty cells and 1343 cells 

in total. Table G1 r F r H consisted of 4896 cells of which 657 cells were primary 
unsafe and 1055 were empty. The costs for suppressing a cell was defined to be 
ai ^ 0.4 with ai the cell value. 

Table 1. Results of running three approaches to protect a set of two linked tables 

Approach* 
Number of secondary 
suppressions 

Sum of costs of secondary 
suppressions 

 G2 rF G1rFrH G2 rF G1rFrH 
ModFull 96 709 8420 33330 
ModAd 73 677 6528 31234 
Trad 75 788 6440 34452 

      *
 ModFull = Complete Modular, ModAd = Adjusted Modular, Trad = Traditional. 

 
In this (rather small) instance, with regard to the number of suppressions, the 

Adapted Modular (ModAd) approach outperforms the other two, i.e., the Complete 
Modular (ModFull) and the Traditional (Trad) approach. Table 2 (Appendix) presents 
the same results at some more detail by hierarchical level of the spanning variables. 
While the results of the traditional method on table G2 r F are quite reasonable, the 
method performs especially bad at the second level of variable F in the G1 r F r H 
table. This is perhaps a consequence of running G2 r F first. Note that in this instance 
the disclosure risk for the suppression pattern provided by the traditional method is 
likely to be higher compared to patterns resulting from the other two approaches, 
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because we decided to protect secondary suppressions carried over from the other 
table against exact disclosure only, assigning constant protection levels of 1 to those 
cells. This is probably also the reason why the sum of costs of secondary suppressions 
in G2 r F is smaller for the traditional approach, compared to the adapted modular, 
even though the number of secondary suppressions is larger (73 vs. 75 cells). For 
more discussion on protection levels for secondary suppressions see 4.1. 

Example 2 
In this example, we add a third table to the two tables of example 1. This third table is 
given by G2 r H. For the cover table TC of example 2 it holds: 

 

S*(TC) = { GR i  r F r H, with i = 1, …, 4} U { GR i  r F, with i = 5, …, 20} U { GR i  

r H, with i = 5, …, 20}. 
The extended set of subtables involving some pairs (U, V) of linked subtables for 

the Linked Tables Modular Approach is then given by S**(TC) = { GR i  r F r H, with 

i = 1, …, 4} U {( GR i  r F, GR i  r H), with i = 5, …, 20}. 

For selecting secondary suppressions assigned earlier in the process in a table Tj to 
be carried over to a table Ti (i ≠ j) the areas Ti I Tj have to be considered. Note that in 
each step (but only after processing the second table for the first time), we have to 
consider two of those areas, e.g., T1 I T3 and T2 I T3 for importing secondary sup-

pressions to the third table. In our instance the overlap areas are T1 I T2 = { GR i  r F r 

H, with i = 1, …, 4}, T1 I T3 = { GR i  with i = 1, …, 20} and  T2 I T3 = { GR i  r H, 

with i = 1, …, 4}. 
Tables 3 and 4 in the appendix show the results of processing these 3 tables by the 

adapted modular and the traditional approach. The performance of the methods is 
similar as observed for instance 1: the adapted modular method gave superior results, 
especially for the 3-dimensional table.  

Example 3 
In this example we discuss the special case, where a table in a set of linked tables 
presents results for a subpopulation only, while other tables in the set present results 
on the full population. The instance this time consists of the two tables of example 1, 
G1 rF and G2 rFrH with a third table added, which is this time given by G1 rF rH|5. 
This third table presents data on the subpopulation falling into category 5 of hierarchy 
H. We denote this special ‘subhierarchy’ of H consisting of only one category as H|5. 

Hierarchy H must then be extended, since we now consider two relations. The first 
one, H1, defines the partition of the full population into category 5 and a ‘rest’-
category consisting of all categories of H except category 5. The second one, H2, 
describes the partition of that ‘rest’ into the other categories. H* denotes then the 
covering hierarchy of H1 and H2. We can now re-specify the second table as G2 r F r 
H* and the second and third table can be joined into one, e.g., G1 r F r H1. In this way 
we avoid certain disclosure-by-differencing problems. For instance, if for a given 
category g* of G only one respondent falls into the ‘rest’ category of H1, but the two 
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cells specified by the two other categories of H1 (e.g., category 5 and the root-
category) happen to be safe and remain unsuppressed. Such a problem will only be 
detected by a disclosure control process that explicitly considers the ‘rest’. 

On the other hand, in practice we sometimes deal with much more than just three 
linked tables. Taking into account correctly the relations between subpopulations 
considered for publication and subpopulations not considered for population usually 
adds to the complexity of the problem. In order to keep the effort for disclosure con-
trol processing within reasonable limits, in practice such subpopulation relations are 
often ignored. This can be justified, if the resulting disclosure risks are rather low, 
which is typically the case if the subpopulation of interest is comparatively small. 

4   A Special Application of Partial Suppression Technology 

In section 2.2 we have mentioned that on the level of individual simple sub-tables 
HiTaS uses methods based on Fischetti/Salazar Linear Optimization tools [4] to select 
secondary suppressions. In [5] the same authors propose a relaxed technique. The 
complete cell suppression method of [4] selects among all feasible suppression pat-
terns the one with minimum information loss. This is modeled by associating a weight 
wi with each cell i of the table and by requiring the minimization of the overall weight 
of the suppressed cells, e.g., it minimizes ∑ }{sup iw  where {sup} is the set of sup-

pressed cells. The idea of the partial cell suppression methodology of [5] is, on the 
other hand, to compute intervals around the true cell values ai , [ai  –  zi

- , ai + zi
+], say. 

A set of intervals is considered as feasible, if the feasibility intervals for sensitive cells 
that could be computed taking into account the linear relations of the table and the 
intervals supplied by the partial suppression method cover certain pre-defined protec-
tion intervals. Based on the assumption that in a publication the true cell values would 
be replaced by these intervals, the loss of information associated to such a replace-
ment is modeled as the size of the interval, i.e., zi

- + zi
+, or, in a more flexible way, as 

weighted linear combination of the deviation between interval bounds and true cell 
value wi

-zi
- + wi

+zi
+. Seeking to minimize the overall information loss then means to 

minimize ∑ (wi
-zi

- + wi
+zi

+). 
Although the partial cell suppression problem is computationally much easier to 

solve compared to the complete cell suppression problem, and although a prototypical 
implementation for the partial suppression approach exists, in practice it has not yet 
been tested so far. Statistical agencies tend to be rather reluctant to replace traditional 
cell suppression by an interval publication strategy. Of course the strategy could be to 
suppress all cells where zi

- + zi
+ is non-zero. However, the set of these cells tends to 

be much larger then the set of cells suppressed as a result of the complete suppression 
approach. 

In this paper we propose now a strategy to use partial cell suppression as comple-
mentary technique for complete cell suppression within the backtracking procedure of 
the modular approach. Obviously, we could also use this idea when we are carrying 
over suppression patterns between linked tables. 
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4.1   Using Partial Suppression to Compute Protection Levels 

In 2.2 it was mentioned that a suppression pattern for a subtable is considered valid, 
only if the bounds of the feasibility interval for any sensitive cell are at a ‘safe’ dis-
tance from its true value, exceeding the protection level of that cell. Suitable protec-
tion levels are computed by τ-ARGUS according to [7, 4.2.2, table 4.2] and depend on 
the distribution of the individual contributions to a sensitive cell.  

HiTaS deals with each subtable separately, carrying over secondary suppressions 
from overlapping subtables. A suppression pattern for a subtable Ta with secondary 
suppressions ‘imported’ from other subtables should be considered valid only, if the 
feasibility interval for a secondary suppression imported from, say, a subtable Tb does 
not jeopardize the protection provided to the sensitive cells of subtable Tb. Assume an 
intruder first computes the feasibility intervals for all suppressed cells of the subtable 
Ta. Later in his analysis, the intruder is assumed to consider these feasibility intervals 
as a priori bounds when computing feasibility intervals for suppressed cells of subt-
able Tb. Even with this additional a priori information, the resulting feasibility inter-
val for the sensitive cells of subtable Tb should still be sufficiently wide. In the current 
implementation of HiTaS this issue is addressed by assigning protection levels to 
secondary suppressions computed by means of a simple heuristic. The following 
considerations aim at the development of a theoretically sound methodology to re-
place this heuristic. 

Partial suppression provides us with a set of (smallest) intervals which can be pub-
lished safely. This means that feasibility intervals for sensitive cells computed consid-
ering the partial suppression intervals as a priori bounds are sufficiently wide. It will 
therefore be enough to require for any suppression s in a subtable Ta which is an im-
ported suppression in another subtable Tb that the feasibility interval for s computed 
on the basis of a suppression pattern for Tb covers the partial suppression interval of s 
in subtable Ta. 

We therefore propose the following strategy: 
 

(1) Compute a suppression pattern for subtable Ta using complete suppression. 
(2) Compute a partial suppression pattern for subtable Ta where only cells sup-

pressed in (1) are eligible for (partial) suppression. 
(3) Assign the distances between the bounds of intervals given by the partial suppres-

sion pattern and the cell value of any suppressed cell s of Ta as protection level to s 
when protecting any other subtable Tb containing cell s. 

 
Note that this strategy principally may require that protection levels of primary 

suppressions may have to be changed during processing. 
The same strategy could also be used when dealing with the linked table settings of 

the current paper. E.g., in the traditional approach, the suppression pattern of the first 
table is carried over to the second (linked) table. If we then want to protect the second 
table, we will have to treat the complete suppression pattern as primary suppressions. 
Hence, we will need to specify safety ranges to each suppressed cell. We could use 
the above proposed strategy to calculate those safety ranges. 
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5   Summary and Final Conclusions 

This paper has presented a few ideas for a backtracking algorithm that might be im-
plemented in order to extend the τ-ARGUS Modular method, making it able to deal 
with sets of linked tables. We have used small illustrative examples for a first com-
parison of the algorithm properties. In this first comparison a method outlined in [3], 
here referred to as ‘Adapted Modular Approach’, gave promising results.  

Another approach, denoted here as ‘Linked Subtables Modular Approach’ has cer-
tain theoretical advantages but is on the other hand more complex. Which of the two 
works better in practice is a question that we will be able to answer only after some 
testing on much larger datasets as we have used in this paper. For a decision on which 
algorithm to implement in a future version of τ-ARGUS the results of such a compari-
son should be considered. 

The challenge of making the τ-ARGUS Modular method applicable to linked tables 
is, however, not only a matter of finding a good way for subtable construction and 
ordering sequences for the backtracking. To handle sets of linked tables means also to 
handle much larger datasets than just single tables. It means that more complex data 
structures are considered for disclosure control, and this tends to increase the informa-
tion loss. In order to address these issues, in section 4 we have discussed partial cell 
suppression methodology. We have drafted a method to determine protection levels 
for secondary suppressions in a theoretically sound way using partial suppression 
methodology. This may eventually help to improve the performance of the Modular 
method regarding information loss. 
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Appendix 

Table 2. Results for Instance 1: Number of suppressed cells for test-tables G1rFrH and 

G2 rF  by hierarchy levels1 

Test- Level spanning variable ModAd ModFull Trad 

table GGGG FFFF # Secondary suppressions 

1 1 0 0 0
1 2 0 0 0
2 1 0 0 0
2 2 10 12 8 
3 1 0 0 0
3 2 15 26 17 
4 1 0 0 0
4 2 48 58 50 

G2 rF

All 73 96 75 
1 1 0 0 0
1 2 3 3 3
2 1 7 7 7
2 2 270 292 357 
3 1 17 23 17 
3 2 355 346 379 

G1rFrH

All 652 671 763  
1 For G1rFrH statistics computed only for cells which are not in G2rF. 
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Table 3. Results for the set of the three linked tables of Instance 2 

Approach Number of secondary  
suppressions 

Sum of costs of secondary  
suppressions 

 G2 r F G1rF r H G2 rH G2 r F G1rF r H G2 r H 
ModFull 96 709 101 8420 33330 8413 
ModAd 73 710 77 6528 32178 6432 
Trad 76 794 79 6484 34077 6158 

Table 4. Results for Instance 2: Number of suppressed cells for test-tables G2 rF , G1rF r H and 
G2 r H  by hierarchy levels2 

Test- Level spanning variable ModAd ModFull Trad 

table G F H # Secondary Suppressions 

1 1 1 0 0 0 

1 2 1 0 0 0 

2 1 1 0 0 0 

2 2 1 10 12 9 

3 1 1 0 0 0 

3 2 1 15 26 17 

4 1 1 0 0 0 

4 2 1 48 58 50 

G2 r F 

All 73 96 76 

1 1 2 0 0 0 

1 2 2 3 3 3 

2 1 2 7 7 8 

2 2 2 270 292 360 

3 1 2 16 23 18 

3 2 2 389 346 379 

G1 r F r H 

All 685 671 768 

G2 r H 4 1 2 54 71 53 
2 For G1 r F r H, statistics based only on cells which are not in G2 r F. For G2 r H, statistics 

based on cells neither in G2 r F, nor in G1 r F r H. 
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Abstract. In this paper, we consider how the security of a disclosure
control mechanism based on randomised, but uncontrolled, rounding can
be assessed by Bayesian methods. We develop a methodology, based on
Markov chain Monte Carlo, for estimating the conditional (posterior)
probability distribution for the original cell counts given the released
rounded values. An effective rounding-based disclosure control will re-
sult in high posterior uncertainty about the true value. Conversely, a
posterior distribution concentrated on a single value provides evidence
of ineffective disclosure control.

1 Introduction

Armitage et al (2004) describe the disclosure risk issues associated with the UK
Office for National Statistics’ Neighbourhood Statistics project. This makes pub-
licly available a number of key data sets, stratified by electoral ward. These data
sets take the form of a series of margins (sometimes multiway) of a larger cross-
classification. Armitage et al (2004) investigated a disclosure control mechanism
based on rounding cell counts to a common base, using a stochastic mechanism.
Each margin is rounded independently. Hence, the rounding is not controlled in
the sense described by Cox (1987) where marginal subtotals are required to be
mutually consistent.

One approach to assessing the resulting disclosure risk has been to compute
upper and lower bounds on the true cell counts, based on the rounded counts. De-
tails of this approach are provided by Armitage et al (2004). Where the difference
between the upper and lower bounds is large, it might be concluded that signif-
icant uncertainty exists about the true cell counts and hence disclosure risk is low.
Dobra et al (2003) point out that it is possible that, even where this
difference is large, the data may be informative about the true cell count because
most of the range between the bounds has a negligible probability of having gener-
ated the rounded data. Cox and Kim (2006) describe a variety of rounding
approaches and, for a rounded individual cell, show that the (unbiased rounding)
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approach considered in the current paper does provide differential information
between cell counts between the bounds.

The aim of the current paper is to quantify more precisely the uncertainty
about the true cell counts, given the rounded data, and hence to provide a
more reliable assessment of disclosure risk. The approach is Bayesian, follow-
ing the general framework advocated by Dobra et al (2003). Given the released
rounded totals (data), we aim to provide a probability distribution for the true
cell counts (parameters). Disclosure risk can then be directly assessed in terms
of the probability that a given cell count can be determined to be in a sensi-
tive range (typically zero or other small values). For an alternative approach to
disclosure risk computation and control for marginal table release, see Barak et
al (2007).

2 The Statistical Model

Let x = (x1, . . . , xn)T be the vector of true cell counts for a particular ward. Here
x represents the complete cross-classification by all released variables, even if
only certain margins are released. For example, if age (4 categories) and sex (2
categories) are released, either as individual margins, or as a cross-classification,
or both, then x has 8 components.

We use the p × n matrix D to denote the mapping between the true cell
counts and the true values of the released margins. For example, if x represents
the 4× 2 cross-classification by age and sex, then

D =
(

0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

)

corresponds to release of just the sex margin,

D =

⎛
⎝0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎞
⎠

corresponds to release of the sex margin and the overall total,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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corresponds to release of both margins and the overall total, and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

corresponds to release of the 2 × 4 cross classification, both margins and the
overall total. Hence p can be greater than or less than n.

The disclosure control mechanism takes the true value Dx of the margins to
be released, and applies a random perturbation to obtain the rounded margins
y, for release. The mechanism is stochastic and is designed so that E(y) = Dx,
where expectation is with respect to the perturbation mechanism, so no ‘bias’ is
introduced.

We have examined the following perturbation mechanism, proposed by Nar-
gundkar and Saveland (1972). Let b be a rounding base (assumed to be a small
integer; in the examples below, we use b = 5), and let x� indicate the largest
multiple of b which is less than or equal to x and �x� indicate the smallest mul-
tiple of b which is greater than or equal to x. Then, the stochastic rounding
mechanism has the following form

yi =
{
(Dx)i� with probability 1− 1

b [(Dx)i mod b]
�(Dx)i� with probability 1

b [(Dx)i mod b] (1)

where a mod b = a− a� and y1, . . . , yn are generated independently.
An alternative, but equivalent formulation for this rounding mechanism is

yi = (Dx)i + zi� (2)

where zi is an integer, uniformly distributed on {0, 1, . . . , b− 1}.
The likelihood for model (1) is given by

f(y|x)=
p∏

i=1

[
1− 1

b
[(Dx)i mod b]

]I(yi=�(Dx)i�)[1
b
[(Dx)i mod b]

]I(yi=�(Dx)i�)
×

I (yi ∈ {�(Dx)i�, (Dx)i�}) (3)
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where the indicator function I(·) is equal to 1 if · is true and 0 otherwise. The
term I (yi ∈ {�(Dx)i�, (Dx)i�}) in each component of the product in (3) defines
the bounds on which the method of Armitage et al (2004) is based.

Bayesian inference encapsulates the uncertainty about the unknown true cell
counts x, given the perturbed margins y by a posterior distribution f(x|y),
given by Bayes’ theorem as

f(x|y) ∝ f(y|x)f(x)

where f(y|x) is given by (3), and f(x) is a prior distribution representing the
uncertainty about x prior to obtaining the data y.

Here, we choose a vague prior distribution for x, representing a high level of
uncertainty. We assume that, in the absence of observed data,

f(x) =
1
kn

n∏
i=1

I(xi ∈ {1, . . . , k}. (4)

In other words, we assume that the cell counts xi are independently uniformly
distributed between 1 and k where k is chosen to be large. Provided that k is
larger than any bound likely to arise as a result of the rounding process, then
the constraint that xi ≤ k is irrelevant for practical purposes. Later, we describe
a Bayesian approach where information available at higher geographical levels
of aggregation may be incorporated into a more informative prior distribution
for x.

With this prior,

f(x|y)∝
p∏

i=1

[
1− 1

b
[(Dx)i mod b]

]I(yi=�(Dx)i�)[1
b
[(Dx)i mod b]

]I(yi=�(Dx)i�)
×

I (yi ∈ {�(Dx)i�, (Dx)i�}) (5)

The posterior distribution (5) summarises uncertainty about the true cell
counts x, in light of rounded data y. In particular, uncertainty about an indi-
vidual cell count is summarised by its marginal distribution, for example

f(x1|y) =
k∑

x2=1

· · ·
k∑

xn=1

f(x|y). (6)

Therefore, Bayesian disclosure risk assessment involves computing unnor-
malised joint (5) or marginal (6) probabilities for true cell counts, and then
normalising. Cox and Kim (2006) give expressions for exact posterior probabil-
ities for the case where all cells are independently rounded (D is an identity
matrix). In principle, for arbitrary D, (5) or (6) can be calculated for every x
which satisfies the bounds

p∏
i=1

I (yi ∈ {�(Dx)i�, (Dx)i�}) = 1 (7)
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which can be calculated using the method decribed by Armitage et al (2004).
However, the number of such x can be very large. Even for the simple 2 × 4
example described below, there are 233 280 possible x and the number rapidly
becomes infeasible for even moderate-sized examples.

3 Simulation Using the Metropolis-Hastings Method

An alternative approach is to generate a sample from f(x|y) and use sample
proportions to estimate probabilities. It is possible to sample (approximately)
from f(x|y) using only the unnormalised expression (5), by using the Metropolis-
Hastings method. This method generates dependent observations from f(x|y)
by simulating a Markov chain with equilibrium distribution f(x|y). For details
of this and other Markov chain Monte Carlo (MCMC) methods, see Gamerman
(1997).

Starting with an arbitrary x0 with f(x|y) > 0, we represent the generated
sample by {x0, x1x2, . . .} where xt+1 is generated from xt by first proposing a
value x� from an arbitrary proposal distribution. Then, the proposal is accepted
(xt+1 = x�) with probability

α(x�|xt) = min
{

1,
f(x�|y)q(xt|x�)
f(xt|y)q(x�|xt)

}
(8)

and rejected (xt+1 = xt) otherwise. Note that, as f(x|y) appears in both the
numerator and denominator of (8), the normalising constant is not required and
(5) can be used.

Subject to some technical conditions governing convergence (the most critical
of which is irreducibility – roughly speaking whether any x satisfying (7) be
reached from any other using the process) the distribution of x tends to f(x|y)
and hence after discarding any initial unrepresentative burn-in iterations, the
resulting sample can be used to summarise the posterior distribution (5) or (6).

All that is required to implement this approach is a proposal distribution
which ensures irreducibility. We suggest a distribution which proposes modest
perturbations to x, through

x� = xt + ε (9)

where ε has a discrete distribution. We chose the sample space for ε to include
some combination of

1. All vectors of the form ε=(0, . . . , 0, 1, 0, . . . , 0)T and ε=(0, . . . , 0,−1,0,. . . , 0)T .
These moves correspond to adding or subtracting 1 from a cell count, leaving
all other cell counts unchanged.

2. All vectors of the form ε = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T . These moves
correspond to moving an individual from one cell to another, leaving all other
cell counts unchanged.

3. The subset of those vectors in 2 above where for at least one of the classifying
variables the category is the same for the two cells whose counts are changed.
Hence at least one one-way margin of the cross-classification is unchanged.



Bayesian Assessment of Rounding-Based Disclosure Control 55

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

6

Index

C
el

l C
ou

nt

Fig. 1. Typical time series plot for Metropolis-Hastings approach

4. The sum of 2 vectors of the form of 2 or 3 above, including the restriction to
cases which preserve at least one two-way margin of the cross-classification.

Provided that proposals are generated uniformly within each of the classes
(1,2,3,4) above, then q(x�|xt) = q(xt|x�) and (8) simplifies to

α(x�|xt) = min
{

1,
f(x�|y)
f(xt|y)

}
. (10)

The only potential difficulties are, in finding a starting value x0 with f(x0|y)
> 0 and in ensuring that the resulting algorithm is irreducible. A starting value
can either be identified by directly evaluating the bounds using the method of
Armitage et al (2004) or, if that is infeasible, by a stochastic search (applying
successive proposal steps until a x0 with f(x|y) > 0 is identified). Irreducibil-
ity is a tricky issue, but we hope that a sufficiently rich class of proposals has
been identified to ensure this, although we cannot guarantee this. We note that
for tight bounds (unrounded margins), the proposals in 4 include those defined
by Dobra (2003) as primitive moves and proved by him to constitute an irre-
ducible (Markov) basis, when the released margins correspond to the sufficient
statistics for the parameters of a decomposable graphical model. The rounded
margins in the data releases we examined were all non-overlapping, and hence
decomposable. It remains to show that the extra proposal types (1,2,3) are suffi-
cient to allow transition between all possible alternative marginal configurations
consistent with the released rounded totals.

In practice, therefore, our approach first chooses at random which of the
classes of proposal 1-4 above to generate, then generates a proposed ε uniformly
from within that class, accepting the proposal with probability given by (10). This
Metropolis-Hastings algorithm was applied to several example datasets (see Sec-
tions 5 and 6), and proved to be effective, and reasonably efficient at generating the
required posterior distributions. Figure 1 is a typical plot of the time series of a cell
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count (xi; here for Example 2; the plot has been ‘thinned’ so that only every 50th
observation is plotted), illustrating good mixing with no signs of poor convergence.

4 Gibbs Sampler

An alternative MCMC approach for generating from f(x|y) is based on the
alternative formulation (2) for the rounding process. Here, we consider the (un-
known) perturbations z as part of our analysis and attempt to generate from
the joint posterior distribution f(z, x|y). To achieve this, we note that the con-
ditional distributions f(z|x, y) and f(x|z, y) are straightforward to generate
from and hence a Gibbs sampler (an MCMC approach which involves generat-
ing from conditional distributions) is immediately available. Starting from x0,
we generate z1 from f(z|x0, y) and then x1 from f(x|z1, y). The method then
proceeds by iterative updating z and x in this fashion. In fact the x are updated
component by component with each cell count xi being generated conditionally
given the current values of the other cell counts.

Given x, zi is distributed uniformly on {max{0, yi−(Dx)i}, . . . , min{b−1, yi−
(Dx)i + b − 1}}. The conditional distribution of xi given z and xj , j �= i is uni-
form over a constrained region where the constraints are determined by examining
those rows of D where the value in the ith column is greater than zero. For such
a row, denoted Dj , the corresponding constraint on xi is derived from

yj − zj ≤ Djx ≤ yj − zj + b− 1.

However, it is easy to construct an example where the Gibbs sampler is not ir-
reducible. Suppose that just the two margins of a 2 × 2 table are released, both
rounded to base 2, and that they are (0, 0) and (2, 2). The only possible tables
which could have generated these margins are (1, 0, 0, 1) and (0, 1, 1, 0). However,
transition between these two states is impossible using the Gibbs sampler as de-
scribed above which only allows transitions which change a single xi at a time. For
this reason, we focus on the Metropolis-Hastings algorithm from now on.

5 Example 1: An Artificial Example

We focus on two examples. The first is a 2×4 table with rounded data available on
the individual cell counts, the margins and the total. This is an artificial example
used to illustrate the bounding method described by Armitage et al (2004). The
rounded data, including the rounded margins and total are displayed in Table 1.

Table 1. Rounded 2 × 4 table, margins and total

5 10 0 5 25
5 20 5 0 30

0 25 15 5 50
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Table 2. Bounds for Table 1

[1, 3] [6, 13] [2, 4] [1, 9]
[1, 3] [16, 23] [7, 9] [0, 4]

Table 3. >95% predictive probability intervals for Table 1

[1, 3] [8, 12] [3, 4] [4, 8]
[1, 3] [16, 20] [7, 9] [0, 2]

For this table, the bounds are displayed in Table 2 and predictive probability
intervals of at least 95% are given in Table 3. For some cells, the width of the
95% intervals is around half that of the 100% probability intervals defined by
the bounds.

Finally, the complete posterior distribution for all eight cells is displayed in
Figure 2. The posterior distribution clearly provides considerably more infor-
mation than is available from the bounds alone. Two distributions are dis-
played, obtained by complete enumeration and by MCMC. The distributions
are almost identical, indicating that the MCMC approach is working
correctly.

6 Example 2: Realistic Structure

The Neighbourhood Statistics project releases data on, amongst many other
things, Income Support claimants. At the time this analysis was developed, the
format of the released data could be summarised as in Table 4, which represents
an imaginary ward.

Table 4. Income Support data for an imaginary ward – structure similar to Neigh-
bourhood Statistics release

Total

10

Age
< 20 20-29 30-39 40-49 50-59 ≥ 60

0 0 5 0 0 10

Gender
Male Female

5 5

Family
Single Couple

< 60 5 0 —Age
≥ 60 5 5 10

10 0 10
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Fig. 2. Posterior distributions for the cells of Table 1, obtained by complete enumera-
tion (solid line) and MCMC (dashed line)

The posterior distributions for the first 8 cells of the complete three-way cross-
classification by age, gender and family make-up are displayed in Figure 3. The
remaining cells are presented in Figure 4 in Appendix A. Note that each row of
distributions in the figures corresponds to a particular agegroup, starting with
Under 20 (cells 1–4) and ending with 60 and over (cells 21–24). Within each row,
the cells are ordered Male/Single, Male/Couple Female/Single, Female/Couple,
so, for example, cell 1 corresponds to under 20/Male/Single.

It can be seen immediately that for many cells there is much more information
available from the posterior distributions than would be provided by the bounds
alone. In particular there are eight cells for which the probability of a zero is
greater than 0.9. Although the bounds indicate that the cell count in these cells
could be as high as 4, the probability that it is greater than 1 is negligible (less
than 0.5%). For these cells, the bounds give a potentially misleading impression
of the disclosure protection provided by the rounding.

In this example, this behaviour can partly be attributed to the table being
sparse. Hence, if only the rounded total (10) was released, the marginal posterior
probability of any cell count being zero, based on the same prior, can be calcu-
lated exactly, to be 0.640. Hence, there is significant concentration of posterior
probability at zero, due only to the fact that we know there are relatively few
individuals distributed throughout a larger number (24) of cells.
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Fig. 3. Posterior distributions for Example 2 (cells 1 to 8)

Table 5. Maximum cell modal probability, by ward, for several wards

Ward A B C D E F G H I J
Probability 0.679 0.774 0.585 0.925 0.739 0.462 0.446 0.736 0.754 0.852

Ward K L M N O P Q R S
Probability 0.858 0.571 0.719 0.804 0.713 0.927 0.818 0.790 0.861

We performed the same analysis for a number of actual wards. As a mea-
sure of how concentrated the posterior distribution can become, over a given
cell, we calculated the modal (maximum) probability for each cell, and then
extracted the most concentrated (highest mode) cell for each ward. The figures
are displayed in Table 5. In each case the posterior distributions demonstrate
greater concentration than would be implied by the bounds alone. An alternative
measure of concentration of the posterior distribution in a cell, suggested by a
referee, would be the ratio of the width of a 95% probability interval for a cell
count, divided by the width of a 100% probability interval (difference between
the bounds). For Table 1, the values of this measure range from 1 (no con-
centration) to 0.5 (an approximate halving of the plausible range). In practical
examples, this reduction can be even greater.

7 Discussion and Extensions

Research on the basic approach described above was extended in two directions.
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Total

1195

Age
< 20 20-29 30-39 40-49 50-59 ≥ 60

20 145 165 140 115 605

Gender
Male Female

825 365

Family
Single Couple

< 60 485 105 —Age
≥ 60 525 80 605

1010 185 1195

Table 6. Income support data for a district

7.1 Informative Prior

In Section 2, we used a vague, noninformative prior distribution for the true
underlying cell counts x, which essentially assumed that any pattern of counts
was equally likely a priori. However, there is prior information available which
we can use to construct a more realistic prior distribution. That information
is the rounded data provided at higher geographical levels of aggregation. For
example, for the data in Table 4, we could use the information provided in Table 6
at district level, to help determine which x are more or less likely. Although
Table 6 has been rounded, the larger cell counts in the table mean that the
effect of this rounding is negligible when considering relative cell proportions.

In fact, incorporating this prior information did not seem to greatly affect
posterior inferences, so we only give brief details here. The prior distribution for
x, was based on the district data in the following hierarchical way. The xi were
assumed to have independent Poisson distributions with mean µpi at the first
stage. At the second stage µ was given an improper uniform distribution, and
p = (p1, . . . , pn)T was given a prior density

f(p) ∝
p∏

i=1

(Dp)αi

i

where α1, . . . , αp reflect prior belief concerning the relative sizes of the released
margins, obtained form the district level data. The prior density mimics a multi-
nomial likelihood, with the αi parameters representing ‘prior counts’ in the re-
leased margins. The overall magnitude of the αi parameters reflects strength of
prior belief. As we do not expect a ward to exactly reflect the district, the values
of the αi parameters are generally set to be smaller than the released district-
level counts, but with the relative values preserved, at least approximately. If
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the αi are given integer values, with consistent sums over overlapping margins,
then computation with this prior is particularly straightforward. It can be set up
as a missing data problem where the αi are thought of as aggregated prior cell
counts, with the actual prior cell counts included in a MCMC sampling scheme.

In all the examples we investigated, the more informative priors have little im-
pact on the posterior inferences. We suspect that this is due to the fact that in-
formation is only available concerning margins, and that information about the
interior of the table would need to be available for the prior to have a large impact.

7.2 Rounding to a Non-adjacent Base Multiple

In examples where bounds are too tight for adequate disclosure protection, al-
lowing rounding to a non-adjacent multiple of base b, with some small proba-
bility, will result in wider separation of bounds. However, this will have little
effect on the posterior distribution for the cell counts, as the following example
illustrates.

We supposed that the rounding had been done according to the following mod-
ification of the scheme described in (1), where, with probability α the rounding is
to a non-adjacent multiple of b, �(Dx)i�+b or (Dx)i�−b (unless 0 ≤ (Dx)i < b
in which case rounding to a negative multiple is prohibited). In each case, the
rounding is unbiased, as described in Section 2. Hence, a cell count of zero al-
ways remains at zero, even with this modification. The likelihood (3), posterior
distribution and computational algorithm are modified accordingly.

We applied this method to the Example 2, using the same released data,
but under the assumption that the modified rounding had been applied. We
assumed values of α = 0 (original approach), α = 0.05 and α = 0.1. Although the
bounds are widened, as indicated by more cell counts having positive posterior
probability, the total probability within this increased range is negligible for both
α = 0.05 and α = 0.1.

7.3 Summary

We have shown that providing full posterior distributions for cell counts gives
a more informative summary of disclosure protection than simply calculating
bounds. The data are in the form of contingency tables, but relatively minor
modification (allowing ε to take non-integer values) would be required in order
to apply the methodology described here to non-integer valued tables.

Our main analysis has been with a reference prior, but the general approach
can easily be extended to incorporate other forms of prior information, for exam-
ple concerning structural zeros, or as in Section 7.1. As the prior is supposed to
incorporate a potential intruder’s state of information, then assessing sensitivity
to realistic intruder prior scenarios should be considered.

An obvious, and important, future extension would be to extend this method-
ology to controlled random rounding.
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Appendix A: Posterior Distributions for Cell Counts in
Example 2 (cells 9 to 24)

Figure 4 presents the posterior distributions for the cell counts for cells 9-24 of
Example 2.
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Fig. 4. Posterior distributions for Example 2 (cells 9 to 24)
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Abstract. Statistical methods for disclosure limitation (or control) have
seen coupling of tools from statistical methodologies and operations re-
search. For the summary and release of data in the form of a contingency
table some methods have focused on evaluation of bounds on cell entries
in k-way tables given the sets of marginal totals, with less focus on eval-
uation of disclosure risk given other summaries such as conditional prob-
abilities, that is, tables of rates derived from the observed contingency
tables. Narrow intervals - especially for cells with low counts - could
pose a privacy risk. In this paper we derive the closed-form solutions
for the linear relaxation bounds on cell counts of a two-way contingency
table given observed conditional probabilities. We also compute the cor-
responding sharp integer bounds via integer programming and show that
there can be large differences in the width of these bounds, suggesting
that using the linear relaxation is often an unacceptable shortcut to es-
timating the sharp bounds and the disclosure risk.

Keywords: Confidentiality; Contingency tables; Integer programming;
Linear programming; Statistical disclosure control; Tabular data.

1 Introduction

Social or government agencies often collect data with intent to release a suffi-
cient amount as public information that can be used for statistical inference,
the results of which could affect policy decisions or further research. However, if
too much information is released, confidentiality of individuals or organizations
that has likely been guaranteed upon collection of the data could be compro-
mised. Thus, there must be a trade-off between releasing the useful data and
maintaining privacy.

Statistical disclosure limitation (SDL) deals with developments of methods
and tools for evaluating trade-offs between disclosure risk and data usefulness.
Many of the SDL methods developed in recent years lie at the interface of oper-
ations research and statistical methods; see a detailed review in [20]. There are
many ways in which data confidentiality can be violated, as well as many ways
to determine whether a violation has occurred. In this paper we are concerned
with tabular data releases (e.g., marginal totals and conditional probabilities
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with sample sizes) and the feasibility interval [25], that is, the bounds on a cell
entry in a contingency table that can be induced by given released information.
If these feasibility intervals are too narrow - or if the table is uniquely identified
because the lower and upper bounds are the same - the risk of a disclosure could
be high, particularly in cells with small counts.

We are particularly interested in the cell bounds that can be calculated when
we are given observed conditional probabilities, that is, tables of rates derived
from the observed table of counts. This is an important question because al-
though many categorical data summaries are in the form of marginal tables,
agencies often release rates or percentages representing proportions of individ-
uals who fall in a certain category given some other characteristics (see [21],
p. 7 for an example). Furthermore, the conditionals preserve association mea-
sures such as odds and odds-ratios relevant for data utility (e.g., see [21], [16]).
We explore the question of what information about original cell counts can be
extracted from knowing these conditional probabilities along with the sample
size, and thus what is the effect on disclosure risk. This paper widens the sta-
tistical disclosure limitation literature by considering the effect of releasing a
summary statistic - conditional probabilities - that heretofore has received little
attention.

In this paper we calculate cell bounds given conditional probability infor-
mation and sample size, using an integer/linear programming formulation. We
improve upon the formulation proposed by Slavković and Fienberg [22] by re-
quiring the marginals upon which we condition to be nonzero while allowing
individual cells to be zero, and derive the closed-form solutions for the linear re-
laxation bounds on cell counts thus significantly reducing necessary computing
time. This formulation actually produces somewhat wider bounds than those in
[22], but is more realistic since it accommodates sampling zeros. In Section 2,
we give some technical background on the optimization formulation and a brief
review of the current results on calculation of cell bounds in contingency tables.
In sections 3 and 4, we describe the linear and integer programming formula-
tion for two-way tables and derive closed-form solutions for the linear relaxation,
demonstrating them with two simple examples. We differentiate between two for-
mulations depending if the calculation is done by a data owner or an intruder.
We also compute the corresponding sharp integer bounds via integer program-
ming and show that there can be large differences in the width of these bounds,
suggesting that using the linear relaxation is often an unacceptable shortcut to
estimating the sharp bounds and the disclosure risk for contingency tables given
observed conditional frequencies.

2 Optimization Methods and Cell Bound Calculation for
Contingency Tables

In this paper, we solve linear and integer programs in order to calculate cell
bounds for two-way contingency tables given certain information. A linear
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program consists of a linear objective function, optimized subject to linear
constraints. It can be represented in standard form as:

Minimize cx (1)
subject to Ax = b

x ≥ 0

where there are n decision variables and m constraints, c is a row vector of length
n, x is a column vector of length n, A is a m×n matrix, and b is a column vector
of length m. An integer program can be formulated as (1) with the additional
constraints that all decision variables be integer. Note that decision variables in
this context are variables within an optimization program whose values are to
be optimized; a random variable in the larger statistical context are variables
whose values are determined by some random process (or, more technically,
random variables are functions from a given sample space to the real numbers).

In the context of this paper, we use integer programming (IP) to calculate exact
integer upper and lower bounds on entries in contingency tables. Integer programs
are solved using methods such as Branch-and-Bound and Branch-and-Cut algo-
rithms (see [18]), as in CPLEX, the commercial software [15] used in this work.

Calculating cell bounds for the entries of contingency tables given marginal
totals has a long history, and goes back to Bonferroni [1], Fréchet [12], and
Hoeffding [13] in their work on bounds for cumulative distribution functions
given univariate marginals ([9], [10]). Given an I×J table with total sample size
(n++) and marginal totals (ni+ and n+j), the Fréchet bounds have the following
form for the ijth cell:

min{ni+, n+j} ≥ nij ≥ max{0, ni+ + n+j − n++}.

Work has been done on generalizations of these bounds, i.e. bounds for k -way
contingency tables. Given marginal totals for k -way tables, Dobra and Fien-
berg [6] give explicit formulas for the bounds when the table can be represented
as a decomposable graph, a construct in which the expected counts in the cells
of the table can be written as functions of the marginals. They extended these
results to the case in which the graph is reducible, though when the table cannot
be represented as a graph (which is often the case), other methods such as linear
programming must be employed. The same authors in [7] further extended this
idea to general k -way tables by generalizing the “shuttle algorithm” originally
developed by Buzzigoli and Gusti [2] for three-way tables. This algorithm ex-
ploits hierarchical relationships within the table, and sequentially updates the
bounds for cells until they cannot be further improved. A number of similar
problems and approaches have been addressed in the context of statistical dis-
closure control but these have generally either successfully focused on two-way
tables (e.g. [17], [2]) or broken down in higher-dimensional contexts (see [3]),
though Cox [4] demonstrates that so-called network tables can overcome some
of these problems.

Significantly less work has been done on examining bounds induced by given
observed conditional probabilities. Researchers have begun to examine the cell
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bounds induced by conditional probabilities in conjunction with given marginals,
as well as conditionals alone, using both mathematical programming (linear and
integer) and tools from algebraic statistics such as Markov bases (e.g., see [21],
[22], [11], and [5]). In this paper we only focus on the calculation of linear and
integer bounds given conditionals alone, but offer an improved formulation with
closed form bounds thus reducing the potential computational burden; one of
the biggest criticisms of using Markov bases for these problems is in part com-
putational inefficiency.

As mentioned above, a natural way to obtain sharp bounds given marginals
and/or conditionals is via IP. Solutions to IP’s can be difficult and computation-
ally expensive, which may lead to the desire to use the linear relaxation bounds
as an approximation to the sharp IP bounds. Given the marginals, the maximal
gap between an IP and its linear relaxation has been studied and theoretically
has been shown to be exponentially large ([24], [14]). These results imply that
it could be misleading to assess disclosure risk by using the linear relaxation as
an approximation to the sharp integer bounds. Onn [19] also showed that there
could be arbitrary gaps in the bounds on cell entries given the margins, which
could further increase the disclosure risk. In this paper, we show empirically that
the same is true in the case of given conditional probabilities.

3 Bounds for Cells in Two-Way Tables Given Conditional
Probabilities

In this section we consider I × J tables, using a simple 2× 2 example to demon-
strate the formulation of the integer and linear programming problems with
result on cell bounds. Then, using this formulation we prove a theorem about
the linear relaxation bounds for this situation. We assume a single, unweighted
tabular data release.

3.1 Setting and Notation

Let X and Y be two random variables and O = {oij} be the I×J table (matrix)
of observed counts with sample size N . The joint probability distribution of
these two random variables can be represented as P = {pij}, i = 1, ..., I, j =
1, ..., J , where pij = P (X = i, Y = j) and

∑
i

∑
j pij = 1. Further, the marginal

probability distributions for X and Y are pi. =
∑J

j=1 pij = P (X = i) and p.j =∑I
i=1 pij = P (Y = j) respectively, and conditional probability distributions are

C = {cij} and D = {dij} where cij = pij

p.j
= P (X = i|Y = j) and dij =

pij

pi.
= P (Y = j|X = i) for i = 1, ..., I, j = 1, ..., J . Additionally,

∑
i cij = 1 and∑

j dij = 1.
Note that these probability distributions involve true parameters, and under

the assumption of multinomial sampling the observed counts are just estimators
of those parameters. We are in particular interested in the estimated (observed)
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conditional probabilities and will represent them as Ĉ = {ĉij} and D̂ = {d̂ij}
with ĉij = oij

o.j
and d̂ij = oij

oi.
.

As we have stated, the observed counts for the ijth cell are represented by oij

while in the following integer and linear programs, the decision variables (those
variables which can be varied subject to constraints) used to define cell bounds
are represented by nij . One can think of the observed counts as fixed (as they
are a realization from the joint probability distribution P ), while the nij ’s can
vary with relation to the optimization programs. In what follows, we focus on
the case of given row conditionals, D̂ and sample size, but similar statements
can be derived for the column conditionals, Ĉ.

3.2 Formulation of Optimization Problem for a 2 × 2 Table

We use a simple fictitious example (see [22]) to demonstrate the optimization
setup. Suppose we have a sample of 25 male students and 25 female students
and we ask them whether they have ever illegally downloaded mp3’s on the
internet. Thus X=gender and Y =illegally downloaded? with i = 1, 2 (male,
female), j = 1, 2 (yes, no). These data are summarized in Table 1.

Table 1. Counts for 2-way Table

Download Yes Download No

Male 15 10
Female 5 20

From Table 1, using d̂ij = oij

oi1+oi2
, we can calculate the following 2×2 matrix

of row conditional probabilities; that is, the percentage of students downloading
activity given gender:

D̂ =
[
0.6 0.4
0.2 0.8

]

Similarly, we can calculate P (Gender|Download) = ĉij = oij

o1j+o2j
:

Ĉ =
[

3
4

1
3

1
4

2
3

]

Since in this case we have conditional probabilities that are repeating decimals,
rounding becomes an issue which can affect the calculated bounds. We explore
this issue in Section 3.3.

In most statistical models for contingency table data, each population param-
eter, pij , is assumed to be greater than zero (i.e. no structural zeros). However,
for a given sample we can certainly observe a sampling zero. Because of this,
instead of placing a lower bound of 1 on each cell (as in [22]), we make the lower
bound zero and instead require that each margin have a count of at least one.
This is necessary to satisfy the definition of conditional probability.
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With this in mind, to calculate linear relaxation lower bounds on the ijth

cell counts in the original table based on the row conditionals (matrix D̂), the
following linear program is constructed:

Min nij (2)
s.t. n11 + n12 + n21 + n22 = 50 (3)

− d̂12n11 + d̂11n12 = 0 (4)

− d̂22n21 + d̂21n22 = 0 (5)
n11 + n12 ≥ 1 (6)
n21 + n22 ≥ 1 (7)
nij ≥ 0, ∀i, j (8)

In the above linear program, the d̂ij ’s are assumed known and calculated
from the observed data O. The corresponding integer program to calculate exact
bounds is formulated by simply including integer constraints on all decision
variables. This formulation corresponds to Example 2 in [22], except for the
constraints given by equations (6) and (7) above. In fact, the same linear/integer
program can be written with the observed cell counts, oij ’s instead of d̂ij ’s, by
replacing equations (4) and (5) by

−o12n11 + o11n12 = 0 (9)
−o22n21 + o21n22 = 0. (10)

This formulation with the original counts has not been considered before, but it
is important for providing feasible IP solutions andamore precise assessment of the
disclosure risk by the data owner. We discuss this further below and in Section 4.1.

To calculate lower bounds for each cell, we solve four optimization problems,
each one having a different cell in the objective function. To calculate upper
bounds on each cell, we solve the same four optimization problem but maximize
the objective function instead of minimize. The results of the integer program
are listed in Table 2. These bounds using the improved formulation are actually
the same as calculated in [22], although this may not be the case in general.

Similarly, we can calculate the sharp integer bounds for the Ĉ conditionals
(see Table 3). Because the Ĉ conditionals require rounding, the IP often gives
infeasible solution, and these integer bounds can only be calculated if the original
data are given. Thus the agency can calculate the exact IP bounds using oij ’s
while an intruder, given no other external information, can only calculate the
LP-relaxation bounds (see Table 3). In the next section, we present the closed
form solution for the LP-relaxation bounds, and their implications for disclosure.

3.3 Exact Formulas for Linear Relaxation Bounds Given
Conditional Probabilities

For the linear relaxation as we have formulated it in (2)-(8), notice that the lower
bounds for each cell in Table 2 are equal to the conditional probability for that
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cell. We prove this along with the closed form solution for the upper bounds for
I × J tables, and display the results of a simple calculation for the mp3 data.
In [22], the LP lower bounds were some integer or real-valued number greater
than or equal to 1, but there were no closed form solutions. These new results
can be extended to k -way contingency tables, as we show in [23], since the linear
program associated with it has the same form.

Table 2. IP and LP Results for 2-way Table for D̂ conditionals

Download Yes Download No

Male [3,27], [0.6,29.4] [2,18], [0.4,19.6]
Female [1,9], [0.2,9.8] [4,36], [0.8,39.2]

Recall that I is the number of categories in the first variable, J is the number
of categories in the second, and N is the total sample size. We prove Theorem 1
in the case of our 2× 2 example. Any other size of contingency table would have
a linear program with the same structure, and could be proved similarly.

Theorem 1. Assume we have an I × J contingency table, and none of the
rows in the contingency table sum to zero. Based on the conditional probabilities
P (Y = j|X = i) and the sample size N, we can construct a linear program of the
form (2)-(8). This linear program is minimized when nij = d̂ij , and maximized
for the ijth cell at (N − (I − 1))d̂ij .

Proof. For the lower bound, note that the lower bound for nij cannot be zero
(unless d̂ij = 0, for which the result holds), because if it were, the other cell
which defines its conditional distribution would be forced to zero by (4) or (5).
This cannot happen because of constraints (6) and (7). Constraints (4) and (5)
are derived from the the conditional probability relationship d̂ij = nij∑

j nij
. Since

(6) and (7) hold, and nij is minimized when its marginal is as small as possible,
nij will be minimized when its marginal is 1, which forces nij to be precisely
equal to its conditional probability, d̂ij .

For the upper bound, we maximize the objective function defined in (2). Since
we are maximizing nij , the marginal total for each of the rows (beside the ith row)
in the contingency table will be as small as possible, namely 1, as required by
constraints (6) and (7). This is possible because each of the cells can have a value
equal to their conditional probability. Thus, for all but the ith row, the marginal
total is 1. So now there are N − (I − 1) counts to distribute among the J cells
in row i. Because constraints (4) and (5) are derived from the given conditional
probabilities (i.e. d̂ij = nij∑

j nij
), nij can be no larger than the value which satisfies

nij

N−(I−1) = d̂ij which means nij is maximized at nij = (N − (I − 1))d̂ij . ��

To demonstrate the calculation for the first cell, just note that the lower bound
is simply the associated d̂ conditional probability, 0.6, and the upper bound is
(50−(2−1))∗0.6 = 29.4. The LP-relaxation bounds given are slightly wider than



Cell Bounds in Two-Way Contingency Tables 71

the IP bounds (Table 2); in this case, they seem to be a reasonable approxima-
tion. Although, we would argue that a more mathematically precise definition
of “reasonable approximation” is needed.

Similarly, we can derive the result for given the observed column conditional,
Ĉ and sample size. Now the bound would be: ĉij ≤ nij ≤ (N − (J − 1))ĉij .
For the Ĉ conditionals, we show in Table 3 the sharp integer bounds as well
as the linear relaxations given conditional probabilities rounded to one and two
decimal places. Notice the effect that rounding can have on the LP bounds.

Table 3. IP and LP results (rounded to one and two decimal places) for two-way table
for Ĉ conditionals

Download Yes Download No

Male [6,33], [0.8,39.2], [.75,36.75] [2,14], [0.3,14.7], [0.33,16.17]
Female [2,11], [0.2,9.8], [0.25, 12.25] [4,28], [0.7,34.3], [0.67,32.83]

While the IP bounds calculated in this way give a more precise assessment
of disclosure risk than their LP counterparts, it has been pointed out that the
gaps exist even within the bounds; e.g., by using algebraic tools Slavković and
Fienberg [22] showed that there are only four possible tables of counts satisfying
these constraints. Agencies can use the rounding to release less precise values.
This leads to some loss of utility but also to a gain in protection as the bounds
become wider. The effect of such rounding on data utility and the number of
possible tables is currently being explored by Lee and Slavković [16].

4 Example: Delinquent Children Data

In this section we consider a 4×4 table of counts originally used in [8] to demon-
strate various statistical disclosure techniques for tabular data. Slavković and
Fienberg [22] used this example to demonstrate the effect of released conditional
frequencies in comparison to release of marginal totals, and utilized tools from
computational algebra and Markov bases for the calculation of bounds and the
number of tables. Table 4 shows the number of juvenile delinquents broken down
by county and education level. Titles, row and column headings are fictitious.

Consider the case in which we are given the sample size, N = 135, as well as an
estimate of P (Education Level|County), that is D̂. We can calculate the linear
relaxation bounds immediately using Theorem 1. Slavković and Fienberg [22]
calculated sharp integer bounds using Markov bases, and showed, at that time
a surprising result, that there is only one table of counts that satisfies these
released conditionals. We show here that the data owner does not need to use
the algebraic tools but can get the same bounds and thus the same result by
solving the integer program described below by using the observed counts.
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Table 4. 4 × 4 Table. Delinquent Children Data and Integer Programing Bounds.

Low Medium High Very High

Alpha 15 1 3 1
Beta 20 10 10 15
Gamma 3 10 10 2
Delta 12 14 7 2

4.1 Formulation of Optimization Problems for 4 × 4 Example

Similar to Section 3.2, an integer program can be constructed as follows:

Min nij (11)

s.t.
∑

i

∑
j

nij = N

d̂ij

∑
k 	=j

nik + (d̂ij − 1)nij = 0, ∀i, j = 1, 2, 3 (12)

∑
j

nij ≥ 1 ∀i

nij ≥ 0 ∀i, j
nij integer ∀i, j

where d̂ij are elements of D̂, and equation (12) is derived from the following:

d̂ij

∑
k

nik − nij = d̂ijnij − nij + d̂ij

∑
k 	=j

nik

= d̂ij

∑
k 	=j

nik + (d̂ij − 1)nij = 0

If we know all but one of the conditional probabilities the last one is determined,
and this eliminates four constraints of the original form: d̂ij = nij∑

k nik
∀i, j.

Because the decimal representations of the numbers in D̂ must be rounded,
this integer program is infeasible. However, if we consider the conditional prob-
ability in terms of the original data, we can construct an integer program that
is feasible. Let d̂ij = oij∑

k oik
= nij∑

k nik
. Linearizing the second equality leads to:

0 = oij

∑
k

nik −
∑

k

oiknij = oijnij −
∑

k

oiknij + oij

∑
k 	=j

nik

= oij

∑
k 	=j

nik + (oij −
∑

k

oik)nij

∀i, j = 1, 2, 3, where the oij ’s are the observed cell counts in Table 4. By replacing
constraints in equation (12) by the one above, we can calculate the sharp integer
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bounds on the cell counts. Note that the simplification of coefficients in the
matrix assumes knowledge of the marginal distribution, and thus under the
assumptions of this section would not be available to an intruder. Again, these
bounds could only be calculated by the agency releasing the data.

Notice that in this example, the sharp integer bounds uniquely identify the
original table (that is, the lower bound is equal to the upper bound). Slavković
and Fienberg [22] showed the same result (for IP) but by using tools from
algebraic geometry and Markov bases. This is also an extreme case of entry
uniqueness problem which is related to the entry uniqueness given the margins
(see [19]). Table 5 shows the linear relaxation results calculated using Theorem
1, rounding to one, two, and three decimal places, respectively. Note that the
bounds given in [22] are uniformly narrower than the bounds presented here.
However, this is the result of an unrealistic formulation which forces each cell to
have a count of at least 1. When this constraint is relaxed, the wider bounds in
Table 5 result.

It is evident, with this example as well, that rounding can have a significant
effect on the bounds providing a “false” sense of disclosure risk since the bounds
are much wider. However, notice that the cell with small counts do have short
LP-relaxation bounds given the rounding at two or three decimal places, e.g.
o12 = [0.05, 6.6]. The data owner would most likely decide in this case that these
bounds are too tight and not release the conditional frequencies with the sample
size, even without running the above described IP and knowing that there is
only one possible table.

Table 5. Linear Relaxation Results for 4 × 4 Table (rounding to 1, 2, and 3 decimal
places)

Education Level

County Low Medium High Very High

Alpha [0.7,92.4],
[0.75,99],
[0.75,99]

[0.1,13.2],
[0.05,6.6],
[0.05,6.6]

[0.1,13.2],
[0.15,19.8],
[0.15,19.8]

[0.1,13.2],
[0.05,6.6],
[0.05,6.6]

Beta [0.3,39.6],
[0.37,48.84],
[0.363,47.916]

[0.2,26.4],
[0.18,23.76],
[0.182,24.024]

[0.2,26.4],
[0.18,23.76],
[0.182,24.024]

[0.3,39.6],
[0.27,35.64],
[0.273,36.036]

Gamma [0.1,13.2],
[0.12,15.84],
[0.12,15.84]

[0.4,52.8],
[0.4,52.8],
[0.4,52.8]

[0.4,52.8],
[0.4,52.8],
[0.4,52.8]

[0.1,13.2],
[0.08,10.56],
[0.08,10.56]

Delta [0.3,39.6],
[0.34,44.88],
[0.343,45.276]

[0.4,52.8],
[0.4,52.8],
[0.4,52.8]

[0.2,26.4],
[0.2,26.4],
[0.2,26.4]

[0.1,13.2],
[0.06,7.92],
[0.057,7.524]

5 Conclusions

To date statistical disclosure limitation methodologies for tables of counts have
been heavily focused on the release of unaltered marginal totals from such tables,
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and in part on inferences that are possible by an intruder from such releases.
Many statistical agencies also release other forms of summary data from tables,
such as tables of observed conditional frequencies. These are predominantly re-
leased as two-way and three-way tables, with conditioning on a single variable.

In this paper, we improved on the LP/IP formulation initially proposed in [22]
by not restricting the counts in individual cells to be greater than one. While a
zero marginal would result in a division by zero when calculating a conditional
probability, there need not be any such restriction upon individual cells. The
result is wider - though more realistic - bounds as well as closed-form solutions
for the linear relaxation bounds thus reducing typically necessary optimization
computing time. The proposed bounds hold even if there are observed zero cell
counts. These zeros, however, may reveal extra information about their comple-
mentary cells and this requires some further careful investigation in particular
for k-way tables. These new results can be extended to k -way contingency ta-
bles, as we show in [23], since the linear program associated with it has the same
form.

Our improved formulation also circumvents the feasibility problem with cal-
culation of sharp IP bounds given observed conditionals and sample size by
calculating them using the observed counts directly, a fact relevant for data
owners. The simple examples also show that IP may produce significantly nar-
rower bounds than the linear relaxation of the same optimization problem. These
large discrepancies can be seen especially in large and sparse tables k-way tables
which we further explore in [23]. Because of these discrepancies and potential
gaps within the IP bounds similar to the gaps described by [19] in the case of
margins, the LP bounds often do not seem to be good approximation to the
IP bounds. Thus these LP bounds may not be often reasonable for detecting
whether there is a “true” potential disclosure, except perhaps as a crude ap-
proximation in the event of time-prohibitive sharp IP calculations. More precise
mathematical definition of “reasonable” approximation is needed.

Note that in the 4×4 table (in addition to some other example we considered
but not reported here), the sharp integer bounds given full conditional probabil-
ities uniquely identify the counts in the original table. This occurred more often
with smaller tables, but actually the most elementary example of all (the 2 × 2
table) did not yield a unique specification. At this point, we do not fully un-
derstand the underlying characteristics of a table that would produce a unique
specification. There is some kind of tradeoff between the sample size and the
number of cells, though in our examples the ratio between these two quantities
certainly does not suggest anything obvious.

To further examine the relationship between the sample size and bounds given
conditionals, and their effect on risk and utility, we are currently running simple
simulations. For example, if we multiply each entry in Table 4 by 10, this has the
effect of changing the sample size from 135 to 1350, increasing the width of IP
and LP-relaxation bounds, and increasing the number of possible tables while
maintaining the same conditional probabilities. Having the same conditionals
is important for the utility aspect of SDL as they preserve certain associations



Cell Bounds in Two-Way Contingency Tables 75

within cell counts in the table. Also, in most of the datasets we analyzed (exclud-
ing the small example in Section 3.2) the IP based on the released conditionals
proved infeasible because of rounding issues. Therefore, it is likely, without ex-
ternal information, that in practice releasing conditional probabilities would not
allow intruders to calculate sharp integer bounds, but would give sufficient in-
formation for statistical inference.
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cazioni del R. Instituto Superiore di Scienze Economiche e Commerciali di Firenze,
8 (1936)

2. Buzzigoli, L., Gusti, A.: An algorithm to calculate the upper and lower bounds of
the elements of an array given its marginals. In: Statistical Data Protection (SDP
1998) Proceedings, pp. 131–147. Eurostat, Luxembourg (1998)

3. Cox, L.: Bounds on entries in 3-dimensional contingency tables. In: Domingo-
Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp.
21–33. Springer, Heidelberg (2002)

4. Cox, L.: Contingency tables of network type: Models, markov basis and applica-
tions. Statistica Sinica 17, 1371–1393 (2007)

5. Dobra, A., Fienberg, S., Rinaldo, A., Slavković, A., Zhou, Y.: Algebraic statistics
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Abstract. Some countries use forms of random rounding as a post-tabular 
method to protect Census frequency counts disseminated in tables. These meth-
ods typically result in inconsistencies between aggregated internal cells to mar-
ginal totals and across same cells in different tables. A post-tabular method for 
perturbing frequency counts is proposed which preserves totals and corrects to a 
large extent inconsistencies. The perturbation is based on invariant probability 
transition matrices and the use of microdata keys. This method will be com-
pared to common pre and post-tabular methods for protecting Census frequency 
counts.  

Keywords: Invariant probability transition matrix, Microdata keys, Additivity, 
Consistency. 

1   Introduction 

Protecting Census frequency tables containing whole population counts is a difficult 
problem for many Statistical Agencies who are under legal, ethical and moral obliga-
tions to minimize disclosure risk while meeting user demands for maximizing data 
utility. The main concern for disclosure risk in a Census context arises from small 
counts in tables, i.e. ones and twos, since these can lead to identity disclosure and 
potential attribute disclosure depending on the number and placement of zero cells in 
the rows/columns of the table. Statistical Disclosure Limitation (SDL) methods for 
Census tabular data should not only protect small cells in the tables but also introduce 
ambiguity and uncertainty into the zero cells.  

We assume that Census tables, whether produced by the Statistical Agency or gener-
ated in flexible table building software, have undergone pre-determined SDL rules such 
as: minimal population and average cell sizes above thresholds, collapsing and fixing 
categories of variables spanning the tables, etc. In spite of these efforts to reduce disclo-
sure risk, further and more invasive SDL methods are usually necessary. Common SDL 
methods that are typically implemented at Statistical Agencies for Census frequency 
counts include pre-tabular methods, post-tabular methods and combinations of both.  

Pre-tabular methods are implemented on the microdata prior to the tabulation of 
the tables. The most commonly used method is record swapping between a pair of 
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households matching on some control variables (Dalenius and Reis, 1982, Willenborg 
and de Waal, 2001, Fienberg and McIntyre, 2004). This method has been used for 
protecting Census tables at the United States Bureau of the Census and the Office for 
National Statistics (ONS) in the United Kingdom. Record swapping can be seen as a 
special case of a more general pre-tabular method based on PRAM (Gouweleeuw, 
Kooiman, Willenborg and De Wolf, 1998, Willenborg and De Waal, 2001). The 
method adds “noise” to categorical variables by changing values of categories for a 
small number of records according to a prescribed probability matrix and a stochastic 
process based on the outcome of a random multinomial draw. PRAM can also be 
carried out in such a way as to ensure marginal distributions. In addition, since PRAM 
is a stochastic perturbation, users can make use of the probability transition matrix to 
correct for the measurement error purposely introduced into the data. In practice, 
Statistical Agencies prefer record swapping since the method is easy to implement 
and marginal distributions are preserved exactly on higher aggregations of the data  

Post-tabular methods are implemented on the entries of the tables after they are 
computed and typically take the form of random rounding, either on the small cells of 
the tables or on all entries of the tables. The method of small cell adjustments (round-
ing) has been carried out on the Census tables at the Australian Bureau of Statistics 
(ABS) and the UK ONS, and full random rounding has been carried out at Statistics 
Canada and Statistics New Zealand. Within the framework of developing the SDL 
software package, Tau Argus, a fully controlled rounding option has been added 
(Hundepool, 2002, Salazar-Gonzalez, Bycroft, and Staggemeier, 2005). The proce-
dure uses linear programming techniques to round entries up or down and in addition 
ensures that all rounded entries add up to rounded totals. Other post-tabular methods 
include cell suppression or some form of random perturbation on the cells of the Cen-
sus tables (for example, the method used in the 1991 UK Census was to add 1,0,1−  

to each cell count in a table according to  prescribed probabilities). Cell suppression is 
not typically used in a Census context because of the large number of tables that need 
to be consistently suppressed. Cell perturbation based on a stochastic mechanism 
produces similar results to record swapping but with inconsistencies in cells across 
tables and marginal totals.  

Another method of SDL prominent in the literature for minimizing disclosure risk in 
frequency tables is to report only the marginal minimal sufficient statistics (see Dobra 
and Fienberg, 2003, Fienberg and Slavkovic, 2005 and references therein). While these 
methods may be good solutions when generating completely flexible outputs via web-
based advanced query systems, they generally do not apply for standard frequency ta-
bles that are disseminated by Statistical Agencies. Indeed, Statistical Agencies will 
release key statistics at higher aggregations without any perturbation applied at all. 
Disclosure risk is typically managed by fixing the categories of geographies and other 
variables in order to avoid the disclosure risk that occurs from differencing and linking 
tables, introducing ambiguity in zero cells and masking small cells. 

Since more invasive SDL methods are needed to protect against disclosure risk in a 
Census context, this has a negative impact on the utility of the data.  It is well known 
that Census data have errors due to data processing, coverage adjustments, non-
response and edit and imputation procedures, although much effort is devoted to 
minimizing these errors. When assessing disclosure risk, it is essential to take into 
account measurement errors and the protection that is already inherent in the data. For 
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example, a quantitative measure of disclosure risk should take into account the 
amount of imputation and adjust parameters of the SDL methods accordingly to be 
inversely proportional to the imputation rate. This ensures that the data is not overly 
protected causing unnecessary loss of information. It should also be noted that once 
Census results are disseminated, they are generally perceived and used by the user 
community as accurate counts.  

In this paper, we propose a new SDL method for protecting Census frequency 
counts which combines some of the characteristics and good qualities of the pre and 
post-tabular methods mentioned above. Section 2 describes the method. Section 3 
compares the method to other common SDL methods with respect to disclosure risk 
and data utility.  The analysis will be carried out on a real table from the UK 2001 
Census. We conclude with a brief discussion in Section 4.  

2   Invariant Post-tabular SDL Method 

In developing a method for protecting Census frequency counts we need to ensure the 
following properties: 
 

1. Additivity  –  all internal cells  add up to marginal  totals. 
2. Consistency –   internal cells and totals appearing across different tables are the 

same. 
3. Reduce the risk of being able to deduce cell values through linking and differencing 

tables. 
4. Preserve stochastic properties – cells are perturbed using a stochastic process,   

statistical properties are preserved and information about the perturbation can be 
disseminated to users to take into account in their analysis.  

 

We consider a combination of pre and post-tabular methods to develop a new method 
that will follow the above guiding principles.  

2.1   Invariant Probability Matrices 

The perturbation of internal cells of the frequency table will be carried out using an 
invariant probability transition matrix, similar to the method that is used in PRAM.  
Let P  be a LL ×  transition matrix containing conditional probabilities:  

) is  valuecell original| is  valuecell perturbed( ijppij =   

for cell values from 0 to  L  (a cap is put on the cell values and any cell value above 
the cap would have the same perturbation probabilities).  Let t  be the vector of fre-
quencies of the cell values where the last component would contain the number of 
cells above cap  L  and v  the vector of relative frequencies: ntv =  , where n is the 

number of cells in the table. In each cell of the table,  the cell value  is changed or not 
changed according to the prescribed transition probabilities in the matrix P  and the 
result of a draw of a random multinomial variate u  with parameters ijq  

),...2,1( Lj = . If the j-th value is selected, value i is moved to value j. When i = j, no 

change occurs.  
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Let *t  be the vector of the perturbed frequencies. *t is a random variable and 

tPtt =)|(E * . Assuming that the probability transition matrix P  has an inverse 1−P , 

this can be used to obtain an unbiased moment estimator of the original table: 
1*ˆ −= Ptt . Statistical analysis can be carried out on t̂ . In order to ensure that the 

probability transition matrix has an inverse and to control the amount of perturbation, 
the matrix P  typically is dominant on the main diagonal, i.e. each entry on the main 
diagonal is over 0.5.  

Place the condition of invariance on the transition matrix P , i.e. ttP = . This re-
leases the users of the perturbed table of the extra effort to obtain unbiased moment 

estimates of the original data, since *t  itself will be an unbiased estimate of t . The 
property of invariance means that the expected values of the marginal distribution of 
the cell values being perturbed are maintained and we ensure no bias in the total. 

To obtain an invariant probability transition matrix, the following two stage algo-
rithm is given in Willenborg and De Waal (2001): Let P  be any probability transition 

matrix: )|( * ickcppik ===  where c  represents the original cell value and *c  repre-

sents the perturbed cell value. Now calculate the matrix Q  using Bayes formula by 

∑ =

=
====

l lcplkp

jcpjkp
kcjcpkjQ

)(

)(
)*|( . We estimate the entries kjQ  of this matrix 

by 
∑l llk

jjk

vp

vp
, where jv  is the relative frequency of cell value j. For PQR =  we ob-

tain an invariant matrix where vvPQvR ==  since ∑ ∑
=

k
l llk

jkikj
ij

vp

ppv
r  and 

∑∑ ==
k jikjiji i vpvrv . The vector of the original frequencies v  is an eigenvector 

of R . In practice, Q  can be calculated by transposing matrix P , multiplying each 
column j  by jv  and then normalizing its rows so that the sum of each row equals one. 

Since the property of invariance distorts the desired probabilities on the diagonal (the 
probabilities of not changing a cell value), we propose defining a parameter α  and 

calculating IRR )1(* αα −+=  where I  is the identity matrix of the appropriate size. 
*R  is also invariant and the amount of perturbation is controlled by the parameter α .  
The perturbation process is typically carried out using a “with replacement” strat-

egy where each cell is independently perturbed based on a random multinomial draw 
and changing or not changing the cell value according to the outcome of the draw. In 
order to obtain the exact marginal distribution (and an exact total), we can carry out a 
“without” replacement strategy for selecting cell values to change. In the first step, the 
expected number of cell values that need to be changed are calculated based on the 
probabilities in the transition matrix. In the second step, the expected number of cells 
are selected randomly and the change made. For example, assume 20 cells with a 
value of one and the following probabilities: 0.80 of them will remain a one, 0.10 of 
them will change to a zero and 0.10 will change to a two. The expected number of 
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changes are two cells to a zero, two cells to a two and the remainder with no change. 
Select randomly two cells from among the 20 cells and change the value to zero. 
Select randomly another two cells from the remaining 18 cells and change the value 
to two. This selection method not only ensures an exact total but also reduces the 
additional variance that is induced by the perturbation. This method was used to per-
turb the Sample of Anonymized Records (SARs) of the 2001 UK Census (Gross, 
Guiblin and Merrett, 2004).  

To define the matrix P , the Statistical Agency needs to decide on the amount of 
perturbation required for each cell value, at what probabilities the cell values will 
change to a different value, and the spread of the perturbation. The invariant probabil-
ity matrix ensures a bias of zero in the resulting table and the values and spread of the 
probabilities on the off-diagonals determine the perturbation variance. One constraint 
on the matrix P  might be maximizing the entropy of the perturbation by defining an 
equal probability of moving to all neighboring cells for each cell value. This con-
straint will maximize the perturbation variance for a given value on the diagonal. 

An example of the impact of the spread of the perturbation on the variance is as 
follows: assume a 9 × 9 probability transition matrix P  for cell values 0,1,…8 and a  
probability of 0.7 on the diagonal (i.e., no change occurs on the cell value with a 
probability of 0.7), and all the off-diagonals have equal probabilities (maximum en-
tropy) of 0.0375 (=0.3/8). Assume also an equal number of cells having values 

0,1,…,8. The invariant matrix *R  with 5.0=α  will have 0.751 on the diagonal and 
0.031 on the off-diagonals.  The expectation of the perturbation process based on the 
invariant matrix is 0 and the average perturbation variance across cells 3.72. Assume 
on the other hand the probability transition matrix P  presented on the left side of  (1) 

and the invariant matrix *R on the right  side of (1). For an equal number of cells for 
each value, the expectation of the perturbation process based on the invariant matrix 
is 0 and the average perturbation variance across cells 0.37. 
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 (1)  

 
As mentioned, using a “without” replacement selection strategy for changing cell 

values will ensure exact totals and eliminate the perturbation variance. However, we 
need to develop a different selection process that will preserve the consistency of cell 
values for same cells disseminated across different tables. This method is described in 
Section 2.2.   
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2.2   Microdata Keys 

Motivated by the method developed by the Australian Bureau of Statistics (ABS) 
(Fraser and Wooton, 2006), a random number (a key) is defined for each record in the 
microdata. When records are grouped together to form a cell in a table, their keys are 
also aggregated and their sum defines the seed for the perturbation. The aim is that all 
records aggregated into same cells will have a consistent seed and therefore a consis-
tent perturbation across all tables. The key can be defined for example by generating a 
random uniform number iu  from 0 to some large number for each record i in the 

microdata. The aggregation of the records to form a cell c of a table produces an ag-

gregation of the random uniform numbers: ∑ ∈
=

ci i
c uU .  Taking the modulo of 

100 of cU , i.e. )100,mod( cc UQ =  and a large enough table, a  uniform distribution 

from 0 to 99 is obtained which can be used to carry out a consistent perturbation 
across tables.  

The proposed method of a permanent seed generated from the microdata imposes a 
“with” replacement selection strategy where cells are independently perturbed and 
therefore this selection method will only preserve the expectations of the totals as 
described in Section 2.1. In order to carry out a “without” replacement selection strat-
egy to preserve exact totals with the intent to also preserve consistency to a large 
extent, we might consider drawing the cell values to change systematically using the 
following algorithm:  

 

1. For each cell value ic , determine the expectations of the outcome of the perturba-

tions by multiplying the number of cells 
icn by the transition probabilities *

jiccr :  

*
iiiii ccccc rnE ×=    and *

jiiji ccccc rnE ×=   

2. Sort the original cells having a value of  ic   by their aggregated key icQ  

3. Select the first 
ii ccE   values and maintain their value, select  the next 

jiccE  and 

change the value from ic  to jc , repeat for all  jc  

4. Place the perturbed cells  back in their original order 
 

Since the sorting of the cells is based on  a constant icQ , which is a random uni-

form number between 0 to 99, we can expect that some of  the consistency will be 
preserved using a “without” replacement selection strategy.  

For cell values of zero, no microdata keys are defined. If the perturbation is zero-
restricted (cell values of zero are not perturbed), then consistency will not be a prob-
lem for the non-zero cells. In general, Statistical Agencies prefer not to perturb zero 
cells in order to ensure that no positive values appear for structural zeros in a table.  

Another feature in the perturbation process is that there may be key statistics in a 
table where the Statistical Agency would not want any perturbation applied. The re-
cords that are involved in producing these statistics can have their Microdata Keys 

determined a priori so that cU  is set to a specific chosen value that would indicate 
that no perturbation should be applied.  
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2.3   Preserving Additivity 

In order to preserve consistency all non-zero cells should undergo the perturbation 
process including margins. Since the expected value of the totals are to be preserved  
using the invariant probability transition matrix and microdata keys, only minor dis-
crepancies will occur between aggregated internal cells to the perturbed margins. To 
obtain exact additivity to the perturbed margins we need to carry out linear program-
ming. Note that preserving the additivity will likely impact on the consistency of cells 
across tables. However with this proposed method, since only minor adjustments will 
be needed to correct  the additivity, the impact on consistency will be  minimal.  

One simple way to preserve additivity is through an IPF algorithm as explained be-
low for a two-dimensional table defined by cell counts rcm  with rows Rr ,..,1=  and 

columns Cc ,..,1= . Assume marginal row values by rM and marginal columns val-

ues by cM .  

1. Calculate row totals for each Rr ,..,1= :  ∑ =
= C

c rcr mt
1

 

2. Calculate the ratio: rrr tM /=α  for  each Rr ,..,1=  

3. Multiply internal cells in each Rr ,..,1=    by  rα  

4. Calculate column totals for each Cc ,..,1= :     ∑ =
= R

r rcrc mt
1
α  

5. Calculate the  ratio:  ccc tM /=β for each  Cc ,..,1=  

6. Multiply internal cells in each  Cc ,..,1=  by cβ     

7. Repeat steps 1 though 6 until the algorithm converges and all internal cells add up  
    to their marginal totals  
 

At this stage, internal cells add up exactly to perturbed margins but they are non-
integer values. Because of the perturbation method and the use of an invariant prob-
ability transition matrix, the non-integer values are similar to the perturbed integer 
values. The non-integer values can be rounded to the nearest integer which will offset 
the additivity slightly due to rounding errors but is easy to implement. To preserve 
exact additivity and obtain integer values after IPF, the controlled rounding procedure 
in Tau–Argus to base 1 (Hundepool, 2002, Salazar-Gonzalez, et al., 2005) can be 
implemented or other software for controlled rounding or “reshuffling” algorithms  
(Boudreau, Filep and Liu, 2004).    

3   Application 

We examine a typical table extracted from one estimation area (EA) of the unperturbed 
2001 UK Census data. The table is disseminated by Output Areas (OA) which are the 
smallest Census tracts that are published for the UK Census. The number of OAs in the 
EA is 1,487 and includes on average about 125 households. For each OA, the table is 
defined as follows (the number of categories is given in parenthesis): Economic Activity 
(9) ×  Sex (2) ×  Long-Term Illness (2), i.e. a total of 36 categories. The table includes 
317,064 individuals between the ages of 16 and 74  in 53,532 internal cells. The average 
cells size is 5.92 although the table is skewed with very large and very small columns. 
Table 1 presents the distribution of cell values in the table. 
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Table 1. Distribution of cells according to cell value 

 Cell values Number of cells Percent 
0 17,915 33.5%
1 8,813 16.5%
2 5,913 11.0%
3 4,253 7.9%
4 2,992 5.6%
5 2,210 4.1%
6 1,610 3.0%
7 1,131 2.1%
8 906 1.7%
9 675 1.3%

10 570 1.1%
11+ 6,544 12.2%

Total 53,532 100.0%

 
We implement the proposed method described in Section 2 using the initial prob-

ability transition matrix presented in Table 2. All values under 10 in the matrix repre-
sent the cell values themselves. For example, a cell value of 6 can move to cell values 
of 4,5,7 or 8 with equal probability. For cell values over 11, we calculate their resid-
ual from base 3, i.e. the value of 11 has a residual of (2), the value of 12 has a residual 
of (0) and the value of 13 has a residual of (1). The changes to these cell values are 
based on perturbations, i.e. adding a -2,-1 or +1 to the original cell value. For exam-
ple,  from Table 2,  a large cell above 11 with a residual of 0 or 2 can be perturbed 

 
Table 2. Initial probability transition matrix for the Census table 

Perturbed Cell Values 
11+* 

 Cell 
Value 0 1 2 3 4 5 6 7 8 9 10

(2) (0) (1) 
0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 .10 .70 .10 .10 0 0 0 0 0 0 0 0 0 0 
2 0 .15 .70 .15 0 0 0 0 0 0 0 0 0 0 
3 0 .05 .05 .80 .05 .05 0 0 0 0 0 0 0 0 
4 0 0 .05 .05 .80 .05 .05 0 0 0 0 0 0 0 
5 0 0 0 .05 .05 .80 .05 .05 0 0 0 0 0 0 
6 0 0 0 0 .05 .05 .80 .05 .05 0 0 0 0 0 
7 0 0 0 0 0 .05 .05 .80 .05 .05 0 0 0 0 
8 0 0 0 0 0 0 .05 .05 .80 .05 .05 0 0 0 
9 0 0 0 0 0 0 0 .05 .05 .80 .05 .05 0 0 

10 0 0 0 0 0 0 0 0 .05 .05 .80 .05 .05 0 
11+ (2) 0 0 0 0 0 0 0 0 0 0 .10 .80 .10 0 
11+ (0) 0 0 0 0 0 0 0 0 0 0 0 .10 .80 .10 
11+ (1) 0 0 0 0 0 0 0 0 0 0 0 .10 .10 .80 

    * Cell values over 11  relate to perturbations of -2,-1 or +1. 
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either with -1 or +1 with equal probability while a residual of 1 can be perturbed ei-
ther with -2 or -1 with equal probability.   

Based on the distribution of cell values in Table 1 and the initial probability transi-
tion matrix in Table 2, we calculate an invariant probability transition matrix shown 
in Table 3 where the same explanation holds for larger cell values over 11. The mean 
of the perturbation process is 0 and the average perturbation variance across cells 
0.41.  Note that there is a slightly larger spread in the invariant probability transition 
matrix with very small probabilities of perturbation at the edges.  

Table 3. Final invariant probability transition matrix for the Census table 

Perturbed Cell Values 
11+* 

Cell
Value 0 1 2 3 4 5 6 7 8 9 10 

(2)  (0)  (1) 
0 .977 .023 0 0 0 0 0 0 0 0 0 0 0 0
1 .048 .816 .089 .044 .003 .001 0 0 0 0 0 0 0 0
2 0 .133 .791 .063 .012 .002 0 0 0 0 0 0 0 0
3 0 .090 .088 757 .035 .029 .002 .001 0 0 0 0 0 0
4 0 .008 .023 .049 .848 .037 .032 .001 .001 0 0 0 0 0
5 0 .004 .004 .055 .051 .817 .036 .030 .002 .001 0 0 0 0
6 0 0 0 .004 .059 .050 .818 .035 .032 .002 .001 0 0 0
7 0 0 0 .002 .004 .059 .050 .813 .037 .033 .002 0 0 0
8 0 0 0 0 .002 .004 .056 .047 .819 .037 .028 .008 0 0
9 0 0 0 0 0 .002 .004 .055 .049 .825 .033 .028 .002 .002

10 0 0 0 0 0 0 .002 .004 .045 .039 .738 .146 .022 .005
11+(2) 0 0 0 0 0 0 0 0 .003 .008 .035 .841 .074 .040
11+(0) 0 0 0 0 0 0 0 0 0 .001 .006 .084 .821 .088
11+(1) 0 0 0 0 0 0 0 0 0 .001 .001 .046 .088 .865  

   * Cell values over 11  relate to perturbations of -2,-1 or +1. 

For this application, we perturb only internal cells in order to examine the impact 
on the original totals and use a “with” replacement selection strategy for selecting cell 

values to change based on aggregated microdata keys cQ and the invariant probability 

transition matrix in Table 3. This ensures that the expected values of the marginal 
totals are preserved, i.e. marginal totals after perturbation should be similar to the 
original marginal totals. We implement the IPF to obtain exact marginal totals, round 
each internal cell value to its nearest integer and again aggregate to obtain new mar-
ginal totals. 

The results for the marginal totals before perturbation, after perturbation and the 
IPF with rounding to the nearest integer are presented in Table 4 for the column vari-
ables: Sex, Long- Term Illness, Economic Activity and the Overall Total. These totals 
are obtained by aggregating across the 1,487 geographical areas and the other catego-
ries of the column variables. Using the invariant probability transition matrix, the 
totals after perturbation are similar to the original totals. After applying IPF and  
rounding to the nearest integer, there is an improvement in the marginal totals com-
pared to the original totals.  
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Table 4. Marginal totals for Overall Total, Sex, Long Term Illness and Economic Activity 
before perturbation, after perturbation, and after IPF and rounding  

Variable Before 
Perturbation

After
Perturbation 

After IPF and nearest 
integer rounding 

 Total Total Percent 
Difference

Total  Percent 
Difference

Overall Total 317,064 316,699 0.12 316,959 0.03 
Sex

Males 159,777 159,655 0.08 159,748 0.02
Females 157,287 157,044 0.15 157,211 0.05

Long-Term Illness 
Long-Term  Illness 46,060 46,094 -0.07 46,106 -0.10
No Long-Term Illness  271,004 270,605 0.15 270,853 0.06

Economic Activity 
Part Time  Employed 45,853 45,783 0.15 45,831 0.05
Full Time Employed 158,342 158,171 0.11 158,258 0.05
Unemployed 7,162 7,299 -1.91 7,296 -1.87
Full Time Student 10,828 10,822 0.06 10,825 0.03
Retired 37,910 37,626 0.75 37,669 0.64
Student 18,041 17,977 0.35 18,034 0.04
Looking After  Home 19,244 19,253 -0.05 19,275 -0.16
Permanently Disabled 12,205 12,168 0.30 12,171 0.28
Other 7,479 7,600 -1.62 7,600 -1.62  

As a final step, we implement the controlled rounding option to Base 1 of Tau-
Argus to obtain integer value internal cells and exact margins that equal the totals 
before the perturbation as presented in the second column of Table 4. 

We compare the proposed method to several standard SDL methods for Census 
frequency tables with respect to disclosure risk and data utility in Table 5. The com-
parison is made to other methods that have relatively the same amount of perturbation 
compared to the probability transition matrix that was used in Table 3. Descriptions of 
the SDL methods, disclosure risk and data utility measures used in this analysis as 
presented in Table 5 can be found in Shlomo, 2007.   

With respect to disclosure risk from small cells, post-tabular random and controlled 
rounding procedures eliminate small cells in tables and hence perform better than any 
of the other methods. Compared to record swapping techniques, the small cells in the 
table using the proposed invariant post-tabular method were slightly less protected. It 
should be noted however that in this particular application, we allowed the dissemina-
tion of small cells in the Census table. The Statistical Agency can define the probabil-
ity transition matrix in Table 2 to have greater perturbation on small cells depending 
on its disclosure risk thresholds. Indeed, post-tabular methods provide more control 
on the perturbation of small cells compared to pre-tabular methods. Therefore, disclo-
sure risk based on small cells can substantially be reduced using the proposed invari-
ant post-tabular method although this may impact negatively on data utility.  
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Table 5. Disclosure risk and data utility measures for SDL methods on Census table (values for 
the original table in parenthesis) 

Disclosure 
Risk 

Data Utility Method

Prop. Small
Cells not 
Perturbed 

Average

Distance 

Cramer’s  
      V 

  (0.121) 

Variance
Average

Cell Size   
(188.3)

Between 
Variance* 

(0.000233)

Invariant Post-tabular 
Method (after  IPF and  
 Controlled Rounding)

0.73 0.71 1.79 0.31 2.02

Random Round (RR) 
Base 3 

0 2.03 11.58 0.52 11.42

Semi-controlled RR 
Base 3 

0 2.04 11.88 0.54 13.14

Controlled Round 
Base 3 

0 1.95 9.97 0.39 12.91

Cell Suppression 0 0.42 0.22 -0.04 -0.64

Random Swap** 
10%

0.65 1.39 -3.65 -1.31 -4.82

Targeted Swap** 
10% 

0.49 1.58 -1.93 -0.59 -3.49

 
*    The variable is the proportion of full-time male students with no long-term illness. 
** 10% of records are selected from the microdata and are paired with another 10% of records 

and geography variables swapped. 
 
Since the invariant post-tabular method can perturb non-zero cell values to zero 

cells, we gain ambiguity in the original zero cells of the table and thus reduce the risk 
of attribute disclosure. Disclosure risk is further reduced by minimizing the possibili-
ties of linking and differencing tables for the following reasons: 

 

1. Perturbation distributions have longer tails with varying perturbation variances 
across cells and are harder to decipher, 

2.  Most of the consistency across cells in same tables is preserved making it harder to  
      identify and link cells that have undergone the perturbation.  
 

It should be noted that cell suppression also eliminates small cells, but all other 
values are exactly preserved and therefore tables can be differenced to produce small 
cells and are prone to very high disclosure risk. Also, cell suppression is not generally 
used in a Census context because of the difficulty in suppressing same cells across 
different tables. 

With respect to data utility, besides the method of cell suppression, the utility in the 
data is better preserved under the invariant post-tabular method compared to the other 
SDL methods. Since more zero cells are introduced into the perturbed table, the im-
pact on statistical analysis as a result of “sharpened” distributions is similar to the 
rounding procedures but with less damage. This effect is the opposite to the attenua-
tion seen in record swapping reflected in the negative values.  For example, the 

Hellingerís 
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Cramer’s V statistics has only a 1.8% difference from the value obtained from the 
original table compared to 10.0% to 11.9% for the rounding procedures to base 3 and 
the between variance for the proportion of full-time male students with no long-term 
illness across geographical areas has a 2.0% difference compared to 11.4% to 13.1%. 
Some of the difference between these methods can be explained by the fact that we 
allow small cells in the table for the invariant post-tabular method and therefore 
higher disclosure risk on small cells.   

4    Discussion 

Oganian and Karr, 2006 and Shlomo and De Waal, 2008 discuss the advantages of 
combining different SDL methods in order to improve data utility with respect to 
preserving variances, ensuring unbiasedness and preserving consistency and statistical 
inference. The analysis of the invariant post-tabular method combining pre-tabular 
and post-tabular SDL methods demonstrates that disclosure risk can be managed 
while raising data utility. The proposed method depends on linear program techniques 
to ensure exact additivity constraints which complicates implementation in a produc-
tion line. This constraint however reduces consistency of cells across tables. By per-
turbing with an invariant probability transition matrix and weakening the additivity 
constraint to some extent by ensuring unbiased expectations of the totals (i.e., the 
totals are similar to the original totals as shown in Table 4), the method is very easy to 
implement and consistency exactly preserved across tables. Such a method could be 
used in a flexible table generating web-based package.  
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Abstract. Demand is increasing for statistical agencies to integrate information 
from different sources and to make such data files publicly available. The Na-
tional Center for Health Statistics (NCHS) conducts record linkage activities for 
its surveys, with a major focus being the linkage to the National Death Index.  
In 2004, NCHS updated the mortality follow-up for the National Health Inter-
view Survey (NHIS) which, because of confidentiality protections, was made 
available only through the NCHS Research Data Center. In 2007, NCHS re-
leased a public-use version of the NHIS Linked Mortality Files. The release of a 
public-use file was based upon an approach to maximize the amount of mortal-
ity information included and minimize the amount of perturbed data, while 
maintaining the confidentiality protections of survey participants. Comparative 
analyses between the public-use and restricted-use linked mortality files show 
that the two data files yield very similar results for both all-cause and cause-
specific mortality.  

Keywords: confidentiality; health surveys; record linkage; mortality. 

1   Introduction 

There is increasing demand for federally sponsored health surveys to integrate infor-
mation from additional data sources in order to enhance the availability and quality  
of information on exposures and outcomes and to make such data files publicly  
available. The National Center for Health Statistics (NCHS) enhances several of its 
population-based surveys through record linkage to administrative files. However, the 
linking of records from different data sources can increase the chance that an individ-
ual’s identifiable information may be at risk of being disclosed and NCHS must  
balance the desire to provide publicly available, high quality, and timely data, with 
maintaining appropriate safeguards for the confidentiality of individual responses.   

A major focus of NCHS record linkage activities is the mortality follow-up of its 
surveys through record linkage to the National Death Index (NDI), which maintains a 
national file of death record information [1, 2]. In 2004, NCHS completed a mortality 
follow-up study for the 1986 to 2000 National Health Interview Survey (NHIS) years 
through a probabilistic record linkage with the NDI, with data available only through 
the NCHS Research Data Center (RDC) to ensure that identifiable information of 
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NHIS participants was not released.  In 2007, in order to maximize access to these 
previously highly utilized data sources for public health research, NCHS developed a 
public-use version of the files.   

This paper describes the several steps NCHS undertook to release a public-use ver-
sion of the NHIS Linked Mortality Files in an effort to balance the data needs of the 
research community, while protecting the confidentiality of survey participants. The 
process of releasing public-use linked mortality microdata files included assessing  
re-identification risk, applying statistical disclosure methods to protect the confidenti-
ality of data, and evaluating the analytic properties of the public-use files (which in-
clude some perturbed data) as compared to the original linked data files. This paper 
does not address the various disclosure avoidance techniques used in the release of 
other NCHS public-use data files. 

2   Re-identification Risk Simulation and Data Perturbation Plan 

The NHIS is a cross-sectional household interview survey of the civilian noninstitu-
tionalized population of the United States. The NHIS collects data on a broad range of 
health topics and socio-demographic information.  Descriptions of the NHIS design 
have been published elsewhere [3, 4]. The NHIS years 1986 to 2000 have mortality 
follow-up through December 31, 2002 through probabilistic record linkage to the 
NDI.  A complete description of the methodology used to link NHIS records to the 
NDI can be found at www.cdc.gov/nchs/data/datalinkage/matching_methodology 
_nhis_final.pdf (accessed December 11, 2007) [5].  Throughout this paper, the origi-
nal NHIS Linked Mortality Files available in the NCHS RDC are referred to as “re-
stricted-use” files to distinguish them from the modified public-use files.  

NCHS has strong confidentiality protections for its data products and a Disclosure 
Review Board (DRB) that reviews the disclosure potential of proposed public-use 
data releases. NCHS proposed a data release plan for public-use NHIS Linked Mortal-
ity Files that would reduce the re-identification risk to survey participants and maxi-
mize the amount of mortality information included, while limiting the amount of  
perturbed data introduced.  Standard approaches to protecting confidentiality include 
masking techniques, e.g., creating categorical variables from continuous data, swap-
ping values, and imputation [6, 7, 8].   

The first step in the plan was to determine the mortality information (e.g. timing of 
death, cause of death) for inclusion in the public-use data files. We proposed to re-
place exact follow-up time with approximate follow-up time and limit information on 
exact cause of death to a grouped recode. Information on age and interview date is 
readily available from the public-use NHIS survey data files. The restricted-use files 
provide more detail on the NHIS interview date and NHIS participant age than what 
is available on the public-use NHIS survey data files. For example, NCHS has made 
available on the restricted-use NHIS Linked Mortality files the exact date of NHIS in-
terview (month, day, year) as well as detailed information on age at interview in years 
(not top-coded), date of birth (month, day, year), and age at death.  Such detail on in-
terview date, age, and timing of death facilitate the creation of more detailed and spe-
cific follow-up times for mortality analyses. Table 1 lists key variables included on 
the restricted-use files as well as the reduced number of variables available on the 
public-use NHIS Linked Mortality files. 
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Table 1. Selected variables available for the NHIS* linked mortality files 

 Restricted-use Public-use 
Final mortality status Yes Yes 
Death date Yes (month, day, year) Yes (quarter, year) 
Underlying cause-of-death Yes Yes (grouped recode) 
Contributing cause-of-death Yes Yes†  
Age at interview Yes Yes (top coded at 85+)‡ 
Age at death Yes No 
Age last presumed alive Yes No 
Date of birth Yes (month, day, year) Yes (month, year) ‡ 
Interview date Yes (month, day, year) Yes (quarter, year) ‡ 

* National Health Interview Survey. 
† Flags only for diabetes, hypertension, or hip fracture. 
‡ Available on the public-use NHIS survey data files. 

 
We assessed re-identification risk by identifying existing publicly available data 

sources that have variables in common with the proposed mortality information on the 
public-use NHIS Linked Mortality Files. Using key NHIS public-use socio-
demographic variables and mortality information for NHIS decedents, we identified 
unique records and then matched them to the external data sources. This exercise 
demonstrated that in most cases “unique” records, although matching based upon the 
unique combination of factors, were, in fact, not being correctly matched to the same 
individual. This is most likely due to differences in reporting between the sources of 
data, i.e., self-reported survey data and administrative death records. We considered 
all NHIS decedent “unique” records, which were correctly matched to these public 
data sources, to be at risk for being re-identified.   

After identifying the cases at risk for re-identification, we constructed a plan to 
modify the mortality data for those NHIS decedents at risk and allow for the release 
of a NHIS linked mortality public-use file. All cases considered “re-identifiable” were 
subject to data perturbation and were randomly assigned to have either date of death 
or underlying cause-of-death perturbed. Information regarding vital status was not 
perturbed. Cases requiring date of death perturbation had either the quarter or year 
randomly perturbed, and in some cases both fields were perturbed. For those cases re-
quiring underlying cause-of-death perturbation, we implemented a hot-deck method 
and imputed the 113 grouped underlying-cause-of-death recode by replacing the 
original value with a value from a decedent with similar characteristics [9]. To further 
reduce re-identification risk, an additional random sample of decedents was subjected 
to perturbation. A final attempt to match back the perturbed data to the external data 
files yielded no unique correct matches. The perturbed cases are not identified on the 
public-use files.   

3   Comparative Analysis 

We replicated analyses conducted on the restricted-use files to those conducted on the 
modified public-use files to demonstrate the analytic comparability between the two 
versions of the linked mortality files. We restricted all analyses to those eligible for  
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mortality follow-up, who were at least 25 years of age at the time of the NHIS inter-
view, were non-Hispanic white, non-Hispanic black, or Hispanic, and with no missing 
values for education level, marital status, and cause of death.  We compared mean fol-
low-up times and distributions for select causes of death and used Cox proportional haz-
ards models to compare the relative hazards for mortality risk among a standard set of 
socio-demographic characteristics, which were observed at the time of NHIS interview.  
All analyses take into account the complex survey design of the NHIS [10, 11].   

We examined mortality in the public-use and restricted-use NHIS Linked Mortality 
Files using time from NHIS interview until death; respondents who were not identi-
fied as dying by the end of the follow-up period were assumed to be alive. For the 
public-use files, duration of follow-up was constructed using NHIS interview year 
and year of death. For respondents assumed alive, follow-up time was calculated by 
assigning ½-year of follow-up during their NHIS interview year and a full year of fol-
low-up for each year thereafter until the end of 2002. For the restricted-use files, dura-
tion of follow-up was calculated using complete information on the month, day, and 
year of the NHIS interview and the month, day, and year of death or, for respondents 
assumed alive, until the end of the follow-up period, December 31, 2002.   

In addition to all-cause mortality, we examined 14 causes of death that are among 
the ten leading causes of death in the United States and/or contribute to the most years 
of potential life lost [12]: heart disease, ischemic heart disease, cancer (all sites), lung 
cancer, colorectal cancer, breast cancer (estimated for women only), prostate cancer, 
cerebrovascular diseases, diabetes, pneumonia and influenza, chronic liver diseases 
and cirrhosis, unintentional injuries, suicide, and homicide.  The cause-specific death 
categories are based upon the underlying causes of death from the ICD-10 113-group 
recode. The cause-specific analyses presented in this paper do not control for the tran-
sition in coding rules between ICD-9 and ICD-10 because that transition does not af-
fect the comparisons of interest in this paper [13].  Due to an insufficient number of 
deaths in certain population subgroups, we restricted the cause-specific mortality 
analyses to non-Hispanic whites and non-Hispanic blacks. 

3.1   Results of the Comparative Analysis 

The final sample for the comparative analyses included 897,232 records and 114,264 
deaths. The weighted distribution for covariates included in the models is the same for 
both sets of analyses using the public-use and restricted-use linked mortality files.  
The average age of this sample is 47.9 years and fewer than two percent of respon-
dents are aged 85 or above. Females outnumber males (52.6 to 47.4 percent, respec-
tively), and non-Hispanic whites make up just over 80 percent of the sample while 
non-Hispanic blacks (10.9 percent) and Hispanics (8.2 percent) account for consid-
erably smaller proportions. A vast majority of the sample is married at the time of 
NHIS interview (69.0 percent) and the modal educational category is a high school 
degree or GED (36.0 percent), with 20.4 percent having less than a high school educa-
tion, 21.4 percent some college, and 22.1 percent at least a college degree. Over 35 
percent of the sample resides in the South, while nearly 25 percent resides in the 
Midwest and 19 percent in the West.  

Table 2 shows the comparative descriptive statistics for mortality outcome vari-
ables among the public-use and restricted-use files, respectively. The total number 
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and percentage of persons who were identified as dying in each of the two files (n = 
114,264; Percent = 11.8) is identical. As mentioned above, this illustrates that the vital 
status of individuals was not changed for anyone as a result of the perturbation proc-
ess for the public-use file. However, there are some modest differences in the cause of 
death distributions when comparing the public-use and restricted-use files. For exam-
ple, the number of deaths attributed to some of the more common causes of death, 
such as heart disease (n = 37,272) and lung cancer (n = 8,838) in the public-use file is 
greater than the number of deaths attributed to those causes in the restricted-use file (n 
= 36,689 and n = 8,395, respectively). Similarly, there are modest differences for 
some of the less common causes, such as unintentional and intentional injuries.   

Table 2. Mortality characteristics of 897,232 adults aged 25 years and older in the 1986-2000 
NHIS* linked mortality files 

 Public-use Restricted-use 
 Unweighted n Weighted (%) Unweighted n Weighted (%) 
Follow-up, mean yrs 9.1 8.7 9.1 8.6 
Cause-specific deaths†    
Diseases of the heart 37,272 32.5 36,689 32.0 
Ischemic heart dis-
ease 

11,434 10.0 11,290 9.8 

Cancer, all sites 30,220 26.6 30,197 26.5 
Lung cancer 8,838 7.8 8,395 7.4 
Colorectal cancer 3,044 2.6 3,094 2.7 
Breast cancer‡ 2,421 4.3 2,372 4.2 
Prostate cancer 1,762 3.0 1,786 3.0 
Cerebrovascular  
diseases 

7,802 6.8 7,855 6.8 

Diabetes 3,361 2.9 3,384 2.9 
Pneumonia/Influenza 3,306 2.9 3,342 2.9 
Chronic liver disease/ 
Cirrhosis 

1,238 1.1 1,268 1.1 

Unintentional injuries 3,242 2.9 3,294 2.9 
Suicide 1,097 1.0 1,117 1.1 
Homicide 410 0.3 425 0.4 

* National Health Interview Survey. Mortality follow-up through December 31, 2002. 
† Underlying cause-of-death codes are based upon the ICD-10 113-group recode. As only se-

lect leading causes of death presented, total number of cause specific deaths does not sum to 
114,264. Weighted percentages for cause-specific deaths are based upon the sample of dece-
dents. 

‡ Women only. 

 
Table 3 presents results from Cox proportional hazards models of all-cause mortality: 

one estimated from the public-use file and one estimated from the restricted-use file. The 
results of both models are consistent with expectations, given the results from similar 
models that used an earlier version of this data set [14]. Moreover, hazard ratios (HR) 
and 95 percent confidence intervals (CI) are essentially identical when comparing the re-
sults from the public-use and restricted-use files. For example, in the restricted-use file, 
mortality from all-causes was higher for men compared to women (HR = 1.69, 95  



 A Practical Approach to Balancing Data Confidentiality and Research Needs 95 

percent CI: 1.67, 1.71), and this result was replicated in the public-use data.  For the other 
covariates, similar results were obtained using the two data files.  We also estimated 
models stratified by sex and race/ethnicity (data not shown). The sex-specific models 
yield results that are consistent with previous research and again the public-use and re-
stricted-use files obtain nearly identical hazard ratios and 95 percent confidence intervals. 
Similarly for non-Hispanic whites, non-Hispanic blacks and Hispanics, covariates exhibit 
relationships with all-cause mortality that are consistent with what one would expect 
from the literature [14].  Given differences in the way that the duration of follow-up vari-
able was calculated for the restricted-use and public-use versions of the NHIS Linked 
Mortality Files, the slight differences in model results for all-cause mortality can be ac-
counted for by differences in the duration of follow-up variables. 

Table 3. All-cause mortality by socio-demographic characteristics for adults aged 25 years and 
older in the 1986-2000 NHIS* linked mortality files, n = 897,232, deaths = 114,264 

 Public-use Restricted-use 
 HR† 95% CI† HR† 95% CI† 
Age in years  1.09 1.09, 1.09 1.09 1.09, 1.09 
Sex     
Women 1.00  1.00  
Men 1.69 1.67, 1.71 1.69 1.67, 1.71 
Race/Ethnicity     
non-Hispanic white 1.00  1.00  
non-Hispanic black 1.15 1.13, 1.18 1.15 1.13, 1.18 
Hispanic 0.89 0.86, 0.92 0.89 0.87, 0.92 
Marital status     
Married 1.00  1.00  
Widowed 1.23 1.21, 1.25 1.23 1.21, 1.25 
Divorced/separated 1.40 1.36, 1.43 1.40 1.36, 1.43 
Never married 1.48 1.44, 1.53 1.48 1.44, 1.53 
Education level     
Less than high school 1.68 1.64, 1.72 1.68 1.64, 1.72 
High school/GED 1.41 1.37, 1.44 1.41 1.37, 1.44 
Some college 1.28 1.25, 1.31 1.28 1.25, 1.31 
College degree or more 1.00  1.00  
Region     
Northeast 0.97 0.95, 1.00 0.98 0.95, 1.00 
Midwest 0.99 0.96, 1.01 0.99 0.96, 1.01 
South 1.05 1.03, 1.08 1.05 1.03, 1.08 
West 1.00  1.00  

    * National Health Interview Survey. Mortality follow-up through December 31, 2002. 
    † HR, hazard ratio; CI, confidence interval. Estimated from a Cox proportional hazards 

model. 

 
Each cause-specific mortality table compares the model results from the public-use 

version and the restricted-use version of the NHIS Linked Mortality Files. Due to 
space constraints, we present results for two of the 14 cause specific mortality analy-
ses. Table 4 presents cause-specific results for cancer (all sites) mortality. Mortality 
risk increases just over seven percent for each additional year of age in both the  
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public-use data model and the restricted-use data model. Men experience higher can-
cer mortality risk than women over the course of the follow-up period (public-use 
data HR = 1.57, 95 percent CI: 1.53, 1.62 and restricted-use data HR = 1.59, 95 per-
cent CI: 1.55, 1.63). In the restricted-use data, compared to those who attained more 
than a high school education, those with less than a high school education have a HR 
= 1.37 (95 percent CI: 1.32, 1.42), and in the public-use data the estimates are essen-
tially the same (HR = 1.36, 95 percent CI: 1.31, 1.41). 

Table 4. Mortality from cancer by socio-demographic characteristics for non-Hispanic white 
and black adults aged 25 years and older in the 1986-2000 NHIS* linked mortality files, n = 
802,387 

 Public-use  
(deaths = 28,709) 

Restricted-use  
(deaths = 28,679) 

 HR† 95% CI† HR† 95% CI† 
Age in years  1.07 1.07, 1.07 1.08 1.07, 1.08 
Sex     
Women 1.00  1.00  
Men 1.57 1.53, 1.62 1.59 1.55, 1.63 
Race/Ethnicity     
non-Hispanic white 1.00  1.00  
non-Hispanic black 1.17 1.13, 1.22 1.18 1.13, 1.22 
Marital status     
Married 1.00  1.00  
Widowed 0.86 0.83, 0.90 0.87 0.84, 0.91 
Divorced/separated 1.29 1.24, 1.35 1.29 1.23, 1.35 
Never married 0.92 0.87, 0.98 0.94 0.89, 0.99 
Education level     
Less than high school 1.36 1.31, 1.41 1.37 1.32, 1.42 
High school/GED 1.24 1.20, 1.29 1.24 1.20, 1.29 
More than high school 1.00  1.00  
Region     
Northeast 1.08 1.04, 1.13 1.08 1.04, 1.13 
Midwest 1.04 1.00, 1.09 1.05 1.00, 1.09 
South 1.09 1.05, 1.14 1.09 1.05, 1.14 
West 1.00  1.00  

      *  National Health Interview Survey. Mortality follow-up through December 31, 2002. 
      † HR, hazard ratio; CI, confidence interval. Estimated from a Cox proportional hazards 

model. 

 
In our analytic samples, homicide accounts for only 0.3 percent of deaths.  Both the 

public-use and restricted-use files show similar results, but there is more variation in 
point estimates and their associated standard errors than for all-cause or the more com-
mon cause-specific mortality outcomes (table 5). In the restricted-use files, homicide 
mortality is 2.7 times as likely for men as women, 3.9 times as likely for non-Hispanic 
blacks compared to non-Hispanic whites, and 2.3 as likely for those with less than high 
school education compared to those with more than a high school degree. The hazard ra-
tios in the public-use files are HR = 2.7, HR = 4.0, and HR = 2.4 for men, non-Hispanic 
blacks, and those with less than a high school education, respectively.   
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Table 5. Mortality from homicide by socio-demographic characteristics for non-Hispanic white 
and black adults aged 25 years and older in the 1986-2000 NHIS linked mortality files, n = 
802,387 

 Public-use  
(deaths = 320) 

Restricted-use  
(deaths = 331) 

 HR† 95% CI† HR† 95% CI† 
Age in years  0.98 0.97, 0.99 0.99 0.98, 1.00 
Sex     
Women 1.00  1.00  
Men 2.70 2.13, 3.42 2.70 2.14, 3.40 
Race/Ethnicity     
non-Hispanic white 1.00  1.00  
non-Hispanic black 4.01 3.01, 5.33 3.90 2.92, 5.20 
Marital status     
Married 1.00  1.00  
Widowed 1.26 0.70, 2.29 1.50 0.88, 2.57 
Divorced/separated 1.60 1.15, 2.21 1.62 1.15, 2.27 
Never married 1.88 1.32, 2.68 1.89 1.33, 2.69 
Education level     
Less than high school 2.44 1.71, 3.50 2.31 1.63, 3.26 
High school/GED 1.65 1.22, 2.23 1.55 1.16, 2.07 
More than high school 1.00  1.00  
Region     
Northeast 0.46 0.30, 0.70 0.46 0.30, 0.71 
Midwest 0.82 0.55, 1.20 0.80 0.54, 1.18 
South 1.07 0.76, 1.52 1.03 0.72, 1.47 
West 1.00  1.00  

      * National Health Interview Survey. Mortality follow-up through December 31, 2002. 
      † HR, hazard ratio; CI, confidence interval. Estimated from a Cox proportional hazards 

model. 

 
A comparison of the results for the public-use and restricted-use files for each of 

the 14 causes yields no substantive differences in conclusions, and hazard ratios and 
confidence intervals that are very similar. However, there tends to be less agreement 
in the estimates for the less common causes of death when comparing results from the 
public-use data and restricted-use data models.  Results for all 14 causes of death as 
well as sex and race/ethnic specific analyses can be found at www.cdc.gov/ 
nchs/data/datalinkage/nhis_mort_compare_2007_final.pdf (accessed May 5, 2008). 

4   Discussion 

With the release of public-use linked mortality files, NCHS has intended to balance 
the data needs of the research community while protecting the confidentiality of sur-
vey participants. The availability of nationally representative longitudinal mortality 
follow-up data that has high quality information on risk factors and socio-
demographic characteristics is critical for health research. The updated mortality fol-
low-up for the NHIS creates a prospective component to this cross-sectional data and 
the 2007 public-use release of the NHIS Linked Mortality Files expands access to this 
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rich data source. The modifications made to the public-use file to allow its release in-
clude both limiting mortality information as compared to the restricted-use file and 
perturbing data for a select number of records.   

The comparative analysis shows that the two data files yield similar descriptive and 
model results. Because the perturbation process in the public-use files did not affect 
the vital status of any individuals in the file, the only differences in results between 
the two files when examining all-cause mortality arose due to less specificity in the 
time to death information. The comparative analysis of cause-specific mortality across 
the public-use and restricted-use versions of the NHIS Linked Mortality Files also 
yielded only slight differences in model results, even for causes of death such as 
chronic liver disease and cirrhosis, homicide, unintentional injuries, and suicide.  
Also, since the release of the public-use linked mortality files, researchers concerned 
about whether their results might be affected by the data perturbation have contacted 
us to check their findings on the original data.  We have made every attempt to com-
ply with such requests, and have found, even with much smaller sample sizes, that 
findings are robust with no substantive changes in effect size or statistical signifi-
cance. Yet, caution in using the public-use files is urged for researchers requiring 
more detail on timing of death or age or when examining the mortality patterns of 
small subgroups of the population, such as numerically small racial/ethnic minority 
groups, very old individuals, or young adults, or rare causes of death.   

The new public-use version of the NHIS Linked Mortality Files provides the public 
health, social science, demographic, and medical communities with a data set that is 
readily available, very large, nationally representative, and rich in detail for both base-
line covariates and specificity in outcomes. This paper makes a pragmatic, but unique, 
contribution to both the providers and users of data by discussing the issues related to 
confidentiality protection, demonstrating that the masking procedures implemented to 
reduce re-identification risk resulted in a public-use file with many of the variables 
that data users will need, e.g., information for the calculation of follow-up time and 
cause-of-death information, and providing a comparative analysis of the restricted-use 
and public-use versions of the data.   

More information on NCHS’s Data Linkage Activities and access to the public-use 
linked mortality data files for the National Health Interview Survey, the Third Na-
tional Health and Nutrition Examination Survey and the Second Longitudinal Study 
of Aging can be found at the NCHS Data Linkage website, www.cdc.gov/nchs/ 
&d/nchs_datalinkage/data_linkage_activities.htm. 
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Abstract. t-Closeness is a privacy model recently defined for data a-
nonymization. A data set is said to satisfy t-closeness if, for each group
of records sharing a combination of key attributes, the distance between
the distribution of a confidential attribute in the group and the distribu-
tion of the attribute in the data is no more than a threshold t. We state
here the t-closeness property in terms of information theory and then
use the tools of that theory to show that t-closeness can be achieved by
the PRAM masking method in the discrete case and by a form of noise
addition in the general case.

Keywords: t-closeness, Microdata anonymization, Information theory,
Rate distortion theory, PRAM, Noise addition.

1 Introduction

A microdata set is a data set whose records carry information on invidual re-
spondents, like people or enterprises. The attributes in a microdata set can be
classified as follows:

– Identifiers. These are attributes that unambiguously identify the respondent.
Examples are passport number, social security number, full name, etc. Since
our objective is to prevent confidential information from being linked to
specific respondents, we will assume in what follows that, in a pre-processing
step, identifiers have been removed/encrypted.

– Key attributes. Borrowing the definition from [1,2], key attributes are those
that, in combination, can be linked with external information to re-identify
(some of) the respondents to whom (some of) the records in the microdata
set refer. Examples are job, address, age, gender, etc. Unlike identifiers, key
attributes cannot be removed, because any attribute is potentially a key
attribute.

– Confidential outcome attributes. These are attributes which contain sensi-
tive information on the respondent. Examples are salary, religion, political
affiliation, health condition, etc.
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There are several privacy models to anonymize microdata sets. k-Anonymity
[3,2] is probably the best known. However, it presents several shortcomings which
have motivated the appearance of enhanced privacy models reviewed below. t-
Closeness [4] is one of those recent proposals. Despite its conceptual appeal, t-
closeness lacks computational procedures which allow to reach it with minimum
data utility loss.

1.1 Contribution and Plan of This Paper

We state here t-closeness as an information-theoretic problem, in such a way
that the knowledge body of information theory can be used to find a solution to
it. The resulting solution turns out to be the PRAM masking method [5, 6] in
the discrete case and a form of noise addition in the general case.

Sec. 2 reviews the state of the art in k-anonymity-based privacy models. Sec. 3
gives an information-theoretic formulation of t-closeness. Sec. 4 is a theoretical
analysis of the solution to t-closeness. Empirical results are reported in Sec. 5.
Conclusions are drawn in Sec. 6.

2 Background and Motivation

k-Anonymity requires that each combination of key attribute values should be
shared by at least k records in the data set. To enforce k-anonymity, at least there
are two computational procedures: the original approach based on generaliza-
tion and recoding of the key attributes and a microaggregation-based approach
described in [7] and illustrated in Fig 1. While k-anonymity prevents identity
disclosure (re-identification is infeasible within a group sharing the same key
attribute values), it may fail to protect against identity disclosure: such is the
case if the k records sharing a combination of key attribute values also share
the value of a confidential attribute. Several enhancements of k-anonymity have
been proposed to address the above and other shortcomings. Some of them are
mentioned in what follows.

In [8], an evolution of k-anonymity called p-sensitive k-anonymity was pre-
sented. Its purpose is to protect against attribute disclosure by requiring that
there be at least p different values for each confidential attribute within the
records sharing a combination of key attributes. p-Sensitive k-anonymity has
the limitation of implicitly assuming that each confidential attribute takes val-
ues uniformly over its domain, that is, that the frequencies of the various values
of a confidential attribute are similar. When this is not the case, achieving p-
sensitive k-anonymity may cause a huge data utility loss.

Like p-sensitive k-anonymity, l-diversity [9] was defined with the aim of solv-
ing the attribute disclosure problem that can arise with k-anonymity. A data set
is said to satisfy l-diversity if, for each group of records sharing a combination
of key attributes, there are at least l “well-represented” values for each confi-
dential attribute. Depending on the definition of “well-represented”, l-diversity
can reduce to p-sensitive k-anonymity or be a bit more complex. However, it
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shares with the latter the problem of huge data utility loss. Also, it is insufficient
to prevent attribute disclosure, because at least the following two attacks are
conceivable:

– Skewness attack. If, within a group of records sharing a combination of key
attributes, the distribution of the confidential attribute is very different from
its distribution in the overall data set, then an intruder linking a specific
respondent to that group may learn confidential information (e.g. imagine
that the proportion of respondents with AIDS within the group is much
higher than in the overall data set).

– Similarity attack. If values of a confidential attribute within a group are
l-diverse but semantically similar (e.g. similar diseases or similar salaries),
attribute disclosure also takes place.

t-Closeness [4] tries to overcome the above attacks. A microdata set is said to
satisfy t-closeness if, for each combination of key attributes, the distance between
the distribution of the confidential attribute in the group and the distribution
of the attribute in the whole data set is no more than a threshold t. t-Closeness
can be argued to protect against skewness and similarity (see [10] for a more
detailed analysis):

– To the extent to which the within-group distribution of confidential at-
tributes resembles the distribution of those attributes for the entire dataset,
skewness attacks will be thwarted.

– Again, since the within-group distribution of confidential attributes mimics
the distribution of those attributes over the entire dataset, no semantic simi-
larity can occur within a group that does not occur in the entire dataset. (Of
course, within-group similarity cannot be avoided if all patients in a data set
have similar diseases.)

The main limitation of the original t-closeness paper is that no computational
procedure to reach t-closeness was specified. This is what we address in the
remainder of this paper by leaning on the framework of information theory.

3 Information-Theoretic Formulation of t-Closeness

3.1 Conventions

Throughout the paper, the measurable space in which a random variable (r.v.)
takes on values will be called an alphabet. All alphabets are assumed to be Polish
spaces to ensure the existence of regular conditional probabilities, for example,
any discrete space or the k-dimensional Euclidean space Rk. We shall follow the
convention of using uppercase letters for r.v.’s, and lowercase letters for partic-
ular values they take on. Probability density functions (PDFs) and probability
mass functions (PMFs) are denoted by p, subindexed by the corresponding r.v. in
case of ambiguity risk. For example, both pX(x) and p(x) denote the value of the
function pX at x. The notation for information-theoretic quantities follows [11].
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Fig. 1. Perturbation of key attributes to attain k-anonymity, t-closeness and similar
privacy properties

3.2 Problem Statement

Let W and X be jointly distributed r.v.’s in arbitrary alphabets, possibly dis-
crete, continuous, or mixed Cartesian products. In the problem of database t-
closeness described above and depicted in Fig. 1, X represents (the tuple of)
key attributes to be perturbed, which could otherwise be used to identify an
individual. In the same application, confidential attributes containing sensitive
information are denoted by W . Assume that the joint distribution of X and W
is known, for instance, an empirical distribution directly drawn from a table, or
a parametric statistical model inferred from a subset of records.

A distortion measure d(x, x̂) is any measurable, nonnegative, real-valued func-
tion representing the distortion between the original data X and a perturbed
version X̂ , the latter also a r.v., commonly but not necessarily in the same
alphabet of X . The associated expected distortion D = E d(X, X̂) provides a
measure of utility of the perturbed data, in the intuitive sense that low dis-
tortion approximately preserves the values of the original data, and their joint
statistical properties with respect to any other data of interest, in particular W .
For example, if d(x, x̂) = ‖x− x̂‖2, then D is the mean-square error (MSE).

Consider now, on the one hand, the distribution pW of the confidential informa-
tion W , and on the other, the conditional distribution pW |X̂ given the observation

of the perturbed attributes X̂. In the database k-anonymization problem, when-
ever the posterior distribution pW |X̂ differs from the prior distribution pW , we
have actually gained some information about individuals statistically linked to the
perturbed key attributes X̂ , in contrast to the statistics of the general population.
Concordantly, define the privacy risk R as the Kullback-Leibler (KL) divergence
D between the posterior and the prior distributions, that is, R = D(pW |X̂‖pW ),
which is one of the measures proposed in the original t-closeness paper [4].
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Simple information-theoretic manipulations show that the privacy risk thus de-
fined coincides with the mutual information [11]R = I(W ; X̂), and that both the
KL divergence and the mutual information may be equivalently defined exchang-
ing the roles of W and X̂. Recall that the KL divergence vanishes (that is, one has
0-closeness) if, and only if, the distributions match (almost surely), which in turn
is equivalent to requiring that W and X̂ be statistically independent. Of course,
in this extreme case, the utility of the published data, represented by the distribu-
tion pWX̂ , usually by means of the corresponding table, is severely compromised.
In the other extreme, leaving the original data undistorted, i.e., X̂ = X , compro-
mises privacy, because in general pW |X and pW differ.

We would like to remark at this point that the use of an information-theoretic
quantity for database privacy assessment is by no means new. In addition to the
t-closeness work already cited, [12, 13, 14] already used Shannon entropy as a
measure of information loss, pointing out limitations affecting specific applica-
tions. We would like to stress out that we use a KL divergence as a measure
of information disclosure (rather than loss), consistently with the equivalence
between the case when pW |X̂ = pW and the complete absence of privacy risk.
On the other hand, the flexibility in our definition of distortion measure as a
measure of information loss may enable us to preserve the statistical properties
of the perturbed data to an arbitrary degree, possibly with respect to any other
data of interest. Of course, the choice of distortion measure should ultimately
rely on each particular application.

Consequently, we are interested in the tradeoff between two contrasting quan-
tities, privacy and distortion, by means of perturbation of the original data. More
precisely, consider randomized perturbation rules on the original data X , deter-
mined by the conditional distribution pX̂|X of the perturbed data X̂ given X . In
the special case when the alphabets involved are finite, pX̂|X may be regarded
as a transition probability matrix, such as the one that appears in the PRAM
masking method [5, 6]. The Markov chain W ↔ X ↔ X̂, stating the condi-
tional independence of X̂ and W given X , emphasizes that this randomized rule
has only X as input, but not W . Two remarks are in order. First, we consider
randomized rules because deterministic quantizers are a particular case, and at
this point we may not discard the possibility that more general rules attain a
better tradeoff. Secondly, we consider rules that affect and depend on X only,
but not W , for simplicity. Specifically, implementing and estimating convenient
conditional distributions pX̂|WX rather than pX̂|X will usually be more complex,
and require large quantities of data to prevent overfitting issues.

To sum up, we are interested in a randomized perturbation minimizing the
privacy risk given a distortion constraint (or viceversa). In mathematical terms,
we consistently define the privacy-distortion function as

R(D) = inf
pX̂|X

E d(X,X̂)�D

I(W ; X̂). (1)

For conceptual convenience, we provide an equivalent definition introducing an
auxiliary r.v. Q, playing the role of randomized quantization index, a randomized
quantizer pQ|X , and a reconstruction function x̂(q):
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Fig. 2. Information-theoretic formulation of the privacy-distortion problem

R(D) = inf
pQ|X , x̂(q)

E d(X,X̂)�D

I(W ; Q).

It can be shown [15] that there is no loss of generality in assuming that Q and
X̂ are related bijectively, thus I(W ; Q) = I(W ; X̂), and that both definitions
indeed lead to the same function. The elements involved in the definition of the
privacy-distortion function are depicted in Fig. 2.

Even though the motivating application for this work is the problem of
database t-closeness, it is important to notice that our formulation in principle
addresses any applications where perturbative methods for privacy are of inter-
est. Another illustrative application is privacy for location-based services (LBS).
In this scenario, private information such as the user’s location (or a sequence
thereof) may be modeled by the r.v. X , to be perturbed, and W may repre-
sent a user ID. The posterior distribution pX̂|W now becomes the distribution
of the user’s perturbed location, and the prior distribution pX̂ , the population’s
distribution.

3.3 Connection with Information Theory

Perhaps the most attractive aspect of the formulation of the privacy-distortion
problem in Sec. 3.2 is the strong resemblance it bears with the rate-distortion
problem in the field of information theory. We shall see that our formulation is a
generalization of a well-known, extensively studied information-theoretic prob-
lem with half a century of maturity. Namely, the problem of lossy compression of
source data with a distortion criterion, first proposed by Shannon in 1959 [16].

To emphasize the connection, briefly recall that the simplest version of the
problem of lossy data compression, shown in Fig. 3, involves coding of identically
distributed (i.i.d.) copies X1, X2, . . . of a generic r.v. X . To this end, an n-letter
deterministic quantizer maps blocks of n copies X1, . . . , Xn into quantization
indices Q in the set {1, . . . , 2nR�}, where R represents the coding rate in bits
per sample. An estimation X̂1, . . . , X̂n of the source data vector is recovered to
minimize the expected distortion per sample D = 1

n

∑
i E d(Xi, X̂i), according
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to some distortion measure d(x, x̂). Intuitively, a rate of zero bits may only be
achieved in the uninteresting case when no information is conveyed, whereas
in the absence of distortion, the rate is maximized. Rate-distortion theory deals
with the characterization of the optimal tradeoff between the rateR and the dis-
tortion D, allowing codes with arbitrarily large block length n. Accordingly, the
rate-distortion function is defined as the infimum of the rates of codes satisfying
a distortion constraint.

A surprising and fundamental result of rate-distortion theory is that such
function, defined in terms of blocks of samples, can be expressed in terms of
a single copy of the source data vector [11], often more suitable for theoretical
analysis. More precisely, the single-letter characterization of the rate-distortion
function is

R(D) = inf
pX̂|X

E d(X,X̂)�D

I(X ; X̂) = inf
pQ|X , x̂(q)

E d(X,X̂)�D

I(X ; Q), (2)

represented in Fig. 4. Aside from the fact that the equivalent problem is expressed
in terms of a single letter X rather than n copies, there are two additional
differences. First, the quantizer is randomized, and determined by a conditional
distribution pQ|X . Secondly, the rate is no longer the number of bits required
to index quantization cells, or even the lowest achievable rate using an ideal
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entropy coder, namely the entropy of the quantization index H(Q). Instead, the
rate is a mutual information R = I(X ; X̂).

Interestingly, the single-letter characterization of the rate-distortion func-
tion (2) is almost identical to our definition of privacy-distortion function (1),
except for the fact that in the latter there is an extra variable W , the confidential
attributes, in general different from X , the key attributes. It turns out that some
of the information-theoretic results and methods for the rate-distortion problem
can be extended, with varying degrees of effort, to the privacy-distortion prob-
lem formulated in this work. Some of these extensions are discussed in the next
section.

4 Theoretical Analysis

All theoretical claims in this section are detailed and proven in [15].
Similarly to the rate-distortion function, the privacy-distortion function (1) is

decreasing, convex, and continuous in the interior of its domain. Furthermore,
the optimization problem determining (1), with pX̂|W as unknown variable, is
itself convex. This means that any local minimum is also global, and makes the
powerful tools of convex optimization [17] applicable to compute numerically
but efficiently the privacy-distortion function. In Sec. 5, an example of numerical
computation will be discussed.

While a general closed-form expression for privacy-distortion function has
not been provided, the Shannon lower bound for the rate-distortion function
can be extended to find a closed-form lower bound under certain assumptions.
Furthermore, the techniques used to prove this bound may yield an exact closed
formula in specific cases. A closed-form upper bound is also presented in this
section.

Suppose that W and X are real-valued r.v.’s (random scalars), and that MSE
is used as distortion measure, thus D = E(X − X̂)2. Define the normalized
distortion d = D

σ2
X

, where σ2
X denotes the variance of X . Let σ2

W be the variance
of W , ρWX the correlation coefficient of W and X , and h(W ) the differential
entropy [11] of W . Then,

R(D) � RQGLB(D) = h(W )− 1
2

log
(
2πe

(
1− (1− d)ρ2

WX

)
σ2

W

)
(3)

for 0 � d � 1 (for d � 1, clearly R = 0). We shall call the bounding function
RQGLB(D) the quadratic-Gaussian lower bound (QGLB).

With the same assumptions, namely scalar r.v.’s and MSE distortion measure,
consider the two trivial cases d = 0 and d = 1. The former can be achieved with
X̂ = X , yielding R(D) = I(W ; X), and the latter with X̂ = µX , the mean of
X , for which R(D) = 0. Now, for any 0 � d � 1, set X̂ = X with probability
1 − d, and X̂ = µX with probability d. Convexity properties of the mutual
information guarantee that the privacy-distortion performance of this setting
cannot lie above the segment connecting the two trivial cases. Since the setting
is not necessarily optimal, it may be concluded that

R(D) � RMIUB(D) = I(W ; X)(1− d). (4)
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Fig. 5. Optimal randomized perturbation in the quadratic-Gaussian case

We shall call this bounding function themutual-information upper bound (MIUB).
The pX̂|X determined by the combination of the two trivial cases for intermediate
values of d may be a simple yet effective way to initialize numerical search methods
to compute the privacy-distortion function, as it will be shown in Sec. 5.

Provided that W and X are jointly Gaussian, real-valued r.v.’s, and that MSE
is used as distortion measure, the QGLB (3) is tight:

R(D) = −1
2

log
(
1− (1− d)ρ2

WX

)
, (5)

with d = D
σ2

X
� 1 as before. The optimal randomized perturbation rule achieving

this privacy-distortion performance is represented in Fig. 5. Observe that the
perturbed data X̂ is a convex combination of the source data X and independent
noise, in a way such that the final variance achieves the distortion constraint with
equality.

5 Numerical Computation Example

In this section, we illustrate the theoretical analysis of Sec. 4 with experimental
results for a simple, intuitive case. Specifically, W and X are jointly Gaussian
random scalars with correlation coefficient ρ (after zero-mean, unit-variance nor-
malization). In terms of the database microaggregation problem, W represents
sensitive information, and X corresponds to key attributes that can be used
to identify specific individuals. These variables could model, for example, the
plasma concentration of LDL cholesterol in adults, which is approximately nor-
mal, and their weight, respectively. MSE is used as a distortion measure. For
convenience σ2

X = 1, thus D = d. Since the privacy-distortion function is con-
vex, minimization of one objective with a constraint on the other is equivalent
to the minimization of the Lagrangian cost C = D+ λR, for some positive mul-
tiplier λ. We wish to design randomized perturbation rules pX̂|X minimizing
C for several values of λ, to investigate the feasibility of numerical computa-
tion of the privacy-distortion curve, and to verify the theoretic results for the
quadratic-Gaussian case of Sec. 4.

We implement a slight modification of a simple optimization technique, namely
the steepest descent algorithm, operating on a sufficiently fine discretization of the
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variables involved. More precisely, pWX is the joint PMF obtained by discretizing
the PDF of W and X , where each variable is quantized with 31 samples in the
interval [−3, 3]. The starting values for pX̂|X are convex combinations of the ex-
treme cases corresponding to d = 0 and d = 1, as described in Sec. 4 when the
MIUB (4) was discussed. Only results corresponding to the correlation coefficient
ρ = 0.95 are shown, for two reasons. First, because of their similarity with results
for other values of ρ. Secondly, because for high correlation, the gap between the
MIUB (which approximates the performance of the starting solutions) and the
QGLB (3) is wider, leading to a more challenging problem.

The definitions of distortion and privacy risk in Sec. 3 for the finite-alphabet
case become

D =
∑

x

∑
x̂

p(x)p(x̂|x)d(x, x̂), R =
∑
w

∑
x̂

p(w)p(x̂|w) ln
p(x̂|w)
p(x̂)

.

The conditional independence assumption in the same section enables us to
express the PMFs of X̂ in the expression for R as p(x̂) =

∑
x p(x̂|x)p(x) and

p(x̂|w) =
∑

x p(x̂|x)p(x|w), in terms of the optimization variables p(x̂|x). Our
implementation of the steepest descent algorithm uses the exact gradient with
components ∂C

∂p(x̂|x) = ∂D
∂p(x̂|x) + λ ∂R

∂p(x̂|x) , where ∂D
∂p(x̂|x) = p(x)d(x, x̂) and

∂R
∂p(x̂|x)

= p(x)

(∑
w

p(w|x) ln p(x̂|w) − ln p(x̂)

)

(after simplification [15]).
Two modifications of the standard version of the steepest descent algorithm [17]

were applied. First, rather than updating pX̂|X directly according to the negative
gradient multiplied by a small factor, we used its projection onto the affine set of
conditional probabilities satisfying

∑
x̂ p(x̂|x) = 1 for all x, which in fact gives

the steepest descent within that set. Secondly, rather than using a barrier or a
Lagrangian function to consider the constraint p(x̂|x) � 0 for all x and x̂, after
each iteration, we reset possible negative values to 0 and renormalized the prob-
abilities accordingly. This may seem unnecessary since the theoretical analysis in
Sec. 4 gives a strictly feasible solution (i.e., probabilities are strictly positive), and
consequently the constraints are inactive. However, the algorithm operates on a
discretization of the joint distribution of W and X in a machine with finite preci-
sion. The fact is that precision errors in the computation of gradient components
corresponding to very low probabilities activated the nonnegativity constraints.
Finally, we observed that the ratio between the largest and the smallest eigenvalue
of the Hessian matrix was large enough for the algorithm to require a fairly small
update factor, 10−4, to prevent significant oscillations.

The privacy-distortion performance of the randomized perturbation rules pX̂|X
foundby ourmodification of the steepest descent algorithm is shown inFig. 6, along
with the bounds established in Sec. 4, namely the QGLB (3) and the MIUB (4). On
account of (5), it can be shown that λ = 2σ2

X

(
1/ρ2 − 1 + d

)
. Accordingly, we

set λ approximately to 0.72, 1.22 and 1.72, which theoretically corresponds to
d = 0.25, 0.5, 0.75. A total of 32000 iterations were computed for each value of λ,



110 D. Rebollo-Monedero, J. Forné, and J. Domingo-Ferrer
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Fig. 6. Privacy-distortion performance of randomized perturbation rules found by a
modification of the steepest descent algorithm

at about 16 iterations per second on a modern computer1. The large number
of iterations is consistent with the fact that the Hessian is ill-conditioned and
the small updating step size. Obviously, one would expect that methods based
on Newton’s technique [17] converge to the optimal solution in less iterations
(at the cost of higher computational complexity per iteration), but our goal
was to check the performance of one of the simplest optimization algorithms.
In all cases, the conditional PMFs found had a performance very close to that
described by (5) in Sec. 4. Their shape, depicted in Fig. 7, roughly resembled the
Gaussian shape predicted by the theoretical analysis as the number of iterations
increased. Specifically, Fig. 7 corresponds to λ � 1.22, was obtained after 32000
iterations, and the number of discretized samples of X and W was increased
from 31 to 51. Increasing the number of iterations to 128000 resulted in an
experimental solution shaped almost identically to the optimal one, although
the one in Fig. 7, corresponding to a fourth of the number of iterations, already
achieves values of C reasonably optimal.

1 Implementation used Matlab R2007b on Windows Vista SP1, on an Intel Core2
Quad Q6600 CPU at 2.4 GHz.
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Fig. 7. Shape of initial, optimal, and experimental randomized perturbation rules pX̂|X
found by the steepest descent algorithm

6 Conclusion

An information-theoretic formulation of the privacy-distortion tradeoff in appli-
cations such as microdata anonymization and location privacy in location-based
services is provided. Following the t-closeness model, the privacy risk is measured
as the mutual information between perturbed key attributes and confidential
attributes, equivalent to the KL divergence between posterior and prior distri-
butions. We consider the problem of maximizing privacy (that is, minimizing
the above mutual information) while keeping the perturbation of data within
a pre-specified bound to ensure that data utility is not too damaged. We es-
tablish a strong connection between this privacy-perturbation problem and the
rate-distortion problem of information theory and extend of a number of results,
including convexity of the privacy-distortion function and the Shannon lower
bound. A closed formula is obtained for the quadratic-Gaussian case, proving
that the optimal perturbation is randomized rather than deterministic, which
justifies the use of PRAM in the case of attributes with finite alphabets or noise
addition in the general case.
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Abstract. The aim of this study was to compare different microdata
protection methods for numerical variables under various conditions.
Most of the methods used in this paper have been implemented in the
R-package sdcMicro which is available for free on the comprehensive
R archive network (http://cran.r-project.org). The other methods
used can be easily applied using other R-packages. While most meth-
ods work well for homogeneous data sets, some methods fail completely
when confidential variables contain outliers which is almost always the
case with data from official statistics. To overcome these problems we
have robustified popular methods such as microaggregation or shuffling
which is based on a regression model. All methods have beed tested on
bivariate data sets featuring different outlier scenarios. Additionally, a
simulation study was performed.

Keyword: Statistical disclosure control, numerical data protection
methods, robustness, simulation.

1 Introduction

One of the most important steps in the process of data anonymization is to
anonymize the categorical variables. This means to anonymize indirect identifiers
with respect to the sampling weights.

However, an attacker may try to identify statistical units using numerical vari-
ables by using linking and/or matching procedures as well. The anonymisation of
numerical variables makes it more difficult for the attacker to successfully match
or merge underlying data with other data sources. Therefore, the anonymisation
of numerical variables is of high interest too.

Please note that R-package sdcMicro contains a large amount of methods for
the protection of categorical data (see, e.g., [1] and [2] for a practical applica-
tion). In the following work we will focus on methods for anonymizing numerical
variables such as microaggregation, adding noise, swapping and shuffling.

Serveral perturbation methods for numerical data (microaggregation via z-
transformation, rank swapping, resampling, generation of synthetic data based

J. Domingo-Ferrer and Y. Saygın (Eds.): PSD 2008, LNCS 5262, pp. 113–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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on samples that are generated from the empirical mean and covariance structure
of the data) have been compared within a simulation framework using bivariate
data, for example, by [3].

However, [4] notes that better microaggregation procedures exist. Further-
more, rank swapping destroys the multivariate data structure ([4]). Synthetic
data are approximately normal distributed but the original data do not follow
and can not be transformed to follow a normal distribution in general.

Another simulation study was carried out in [5] where swapping was compared
to shuffling on data sets generated from bivariate normal distributions featuring
different correlations. A similar simulation study was conducted in [6] where the
distribution of the confidential variables followed other theoretical distributions,
but no outliers were included.

The results of [3] are based on random data sampled from theoretical distri-
butions without contamination. But in real world applications we often can not
assume that the data follow a theoretical distribution. Therefore, perturbation
methods must also give reasonable results when outlier exist in the data.

In the next section we introduce the methods that we have evaluated. Details
can be found in the references and the implementation can be found in the R-
package sdcMicro ([7], [8], [1]) which can be downloaded on the comprehensive
R archive network (CRAN, http://cran.r-project.org, see [9]).

1.1 Methods Used in This Study

We now give an overview on the methods that have been investigated. The
methods can be classified into four groups: methods based on sorting, methods
based on grouping, methods based on adding noise and methods for synthetic
data generation.

In Table 1 we give references for each method as well as the the name of the
corresponding function in R-package sdcMicro. Some functions (e.g. addNoise,
microaggregation) are wrapper functions for several methods which are listed
in Table 1 as well. Furthermore, the parameters used in this study are given
in the last column of the table since they are different from the default ones.
The parameters and their default choices are described in detail in the package
manual of sdcMicro. Please note that more method especially on synthetic data
generation are implemented in sdcMicro.

Methods based on adding noise: One possible procedure is to add additive
noise (cited as noise in Tables and Figures) to each numerical variable

Y = X + ε ,

where X ∼ (µ, Σ), ε ∼ N(0, Σε), Σε = α · diag(σ2
1 , σ

2
2 , . . . , σ

2
p), α > 0, Cov(εi �=

εj) ∀i �= j and p is equal the dimension of the numerical variables which should
be perturbed (see e.g. also in [10]).

It is clear that multivariate measures such as the correlation coefficient can
not be preserved after adding additive (uncorrelated) noise. Correlation coeffi-
cients can however be preserved when correlated noise is added. In this case the
covariance matrix of the masked data is ΣY = (1 + α)ΣX (see e.g. in [10]).

http://cran.r-project.org
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Table 1. Investigated methods. Only those references to papers are listed which have
been used for the (re-)implementation of the methods in sdcMicro

Method description Reference Function in sdcMicro Method Parameter used

adding additive noise [10] addNoise additive noise=200

correlated noise [10] addNoise correlated noise=200

correlated noise 2 [11], [12] addNoise correlated2 noise=200

restricted correlated noise [13] addNoise restr noise=200

ROMM [14] addNoise ROMM noise= 200, p = 0.01

adding noise based on mul-
tivariate outlier detection

[4] addNoise outdect noise=200

rank swapping [15] swappNum - p=15, p=40

ma, sort on a single variable - microaggregation single default

ma, individual ranking [16] microaggregation onedims default

ma, influence [4] microaggregation influence default

ma, sorting on first principal
component

- microaggregation pca default

ma, sorting with projection
pursuit pca

[4], [8] microaggregation pppca default

ma, sorting with projection
pursuit pca on clustered
data

[4], [8] microaggregation clustpppca default

ma, mdav [12] microaggregation mdav default

ma, multivariate microag-
gregation based on robust
Mahalanobis distances

[8] microaggregation rmd default

gadp [17], [6] shuffle (output gadp) gadp default

shuffling [6] shuffle (output shuf-
fle)

shuffle default

shuffling based on cgadp [6] shuffle2 shuffle2 default

robust gadp this paper robShuffle (output
gadp)

robGadp default

robust shuffling this paper robShuffle (output
shuffle)

robShuffle default

For method correlated2 d = ε(1− α2) and then xjd + αzj is calculated where
zj are random numbers drawn from N( (1−d)x̄j

α , sj) with sj being the standard
deviation of Xj (see e.g. in [11] or [12]).

The restricted correlated noise method (implemented as method restr in sd-
cMicro) is a similar method that takes the sample size into account ([13]).

Furthermore, method ROMM (Random Orthogonal Matrix Masking, [14])
has been considered in the simulation study. In this method perturbed data are
obtained by the transformation Y = AX where A is randomly generated and
fulfills the orthogonality condition A−1 = AT . To obtain a orthogonal matrix as
described in [14] the Gram-Schmidt procedure was chosen in the computional
implementation of method ROMM.

In order to be able to deal with inhomogeneous data sets including outliers
the first author of the paper has implemented a method in which outliers are
detected. Observations with large robust Mahalanobis distances are treated as
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outliers as well as observations that exhibit univariate outliers, i.e. where the
values of a variable x are greater than robust measure of location (e.g. the
median) plus a robust measure of scatter (usually the Median Absolute Deviation
(see [18])).

Outliers should be protected more (by default by adding additive noise)
than the rest of the observations because outliers show a higher risk for re-
identification than non-outliers. This method is denoted outdect in package sd-
cMicro and in the following text.

Methods based on sorting: Rank swapping (see [15] and [19]) is a method
based on sorting a variable by their numerical values (ranking). Each ranked
value is then swapped with another ranked value that has been chosen randomly
within a restricted range. This means for example that the rank of two swapped
values cannot differ by more than p percent of the total number of observations.
Rank swapping must be applied to each variable separately.

Methods based on sorting and grouping: A familiar definition of mi-
croaggregation can be found at http://neon.vb.cbs.nl/casc/Glossary.htm:
“Records are grouped based on a proximity measure of variables of interest, and
the same small groups of records are used in calculating aggregates for those
variables. The aggregates are released instead of the individual record values.”
The choice of the “proximity” measure is the most challenging and most im-
portant part in microaggregation since the multivariate structure of the data is
only preserved if similar observations are aggregated. Sorting data based on one
single variable in ascending or descending order (method single in sdcMicro),
sorting the observations in each cluster (after clustering the data) by the most
influencial variable in each cluster (method influence, see [4]) as well as sorting
(and re-ordering the data after aggregation) in each variable (individual ranking
method, see [16]) is not optimal for multivariate data (see [8]).

Projection methods which sort the data according to the first principal com-
ponent (method pca) or its robust counterpart (method pppca, see [4]) can be
improved when these methods are applied to clustered data (method clustpp-
pca, see [1], for example). In order to estimate the first principal component in
a robust way, it is necessary to obtain a a robust estimate of the covariance
matrix. However, this is only feasible for small or medium sized data sets using
methods like M-estimation [20], the MVE estimator [21] or the orthogonalized
Gnanadesikan-Kettering (OGK) estimator [22]. Furthermore, all principal com-
ponents must be estimated when using classical approaches for PCA. Method
pppca avoids this and estimates the first (robust) principal component without
the need of estimating the covariance.

The Maximum Distance to Average Vector (MDAV) method is an evolution of
the multivariate fixed-size microaggregation (see [23], for example). This method
(mdav in sdcMicro) is based on Euclidean distances in a multivariate space.

The algorithm has been improved by the first author of the paper by replacing
Euclidean distances with robust Mahalanobis distances. In [1] a new algorithm
called RMDM (Robust Mahalanobis Distance based Microaggregation) was

http://neon.vb.cbs.nl/casc/Glossary.htm
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proposed for microaggregation where MDAV [23] is adapted in several ways. The
proposed procedure (details can be found in [8]) is a more natural approach than
MDAV since multivariate data are dealt with by taking the (robust) covariance
structure of the data into account.

Methods based on models: GADP (method gadp in sdcMicro) is based on the
model Y = Sβ+ε and was originally proposed by [17]. Y are perturbed variables,
S are non-confidential variables and ε ∼ MV N(0, ΣXX − ΣXS(ΣSS)−1ΣSX).
The regression coefficients β are estimated by β̂ = (S

′
S)−1S′X using X , the con-

fidential variables. The procedure is described in detail in http://gatton.uky.
edu/faculty/muralidhar/CDAC42.ppt.

Since correlations between S and X have to be estimated in the procedure, [6]
refers to choose the Spearman rank correlation measure when dealing with non-
normal distributed data. Shuffling is finally done by replacing the rank ordered
values of Y (generated by GADP) with the rank ordered values of X .

Another approach is the copula based GADP which is described in [6] and
which was investigated too. It is assumed that the data follow a theoretical
distribution from which the inverse distribution function can be expressed in
analytical form. This approach is only feasible if the data follow a theoretical
distribution approximately. However, in real world data sets this assumption can
hardly be justified since data almost always include outliers. Therefore, similar
conclusions as in the GADP approach have been obtained since this copula based
approach cannot deal with outlying observations.

These very simple methods are under US-Patent (7200757) and so the re-
implementation of the method is not included in package sdcMicro. Nevertheless,
the scientific work must go on and therefore the first author of the paper has
implemented a - not patented - extension of the procedure which can deal with
outliers as well (see section 2).

Synthetic data: In package sdcMicro a method based on the Cholesky de-
composition for fast generation of synthetic data has been re-implemented with
which multivariate normal distributed data can be generated with respect to the
covariance structure of the original data (details can be found in [24]). However,
this does not reflect the distribution of real complex data since such data are
generally not multivariate normal distributed and include outliers. Thus, this
method was not considered in the simulation study.

Another method which is based on regression is called the IPSO synthetic
data generators (see [25] or [26] for an application). However, the generation of
synthetic data using regression models will fail when dealing with inhomogeneous
data sets including outliers. This method gives reasonable results only for data
that are multivariate normal distributed. For this reason, this method is not
further addressed in this paper.

A well known method is blanking and imputation ([27]). Since outlying obser-
vations may be identified easier than non-outliers it is clear that such a method
must blank and impute the outliers in any case. However, an imputation of
outliers without destroying the multivariate structure of the data is difficult.

http://gatton.uky.
edu/faculty/muralidhar/CDAC42.ppt
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[28] suggested to generate a completely synthetic data set based on the origi-
nal survey data and multiple imputation. This method is not addressed in this
simulation study as well.

Latin Hypercube Sampling ([29], [30], [31]) was also not considered in the paper
because this method gives worst results and we are not sure if this results from a
mistake in our re-implementation of the method. Unfortunately, also the results
based on a MATLAB code from another author are worst ([32]). This is not a
surprise because the inverse of the distribution function must be available for
this method. An analytical form of the inverse of the distribution function is
rather complex or impossible to find for inhomogeneous data sets.

1.2 Information Loss

First we want to overview existing measures of information loss which are al-
most always univariate measures. In this paper we concentrate on multivariate
measures of information loss which evaluate the multivariate structure of the
original and the perturbed data.

One measure of information loss, called IL1s (see e.g. in [33] or [34]) and is
based on aggregated distances from original data points to corresponding values
from the perturbed data divided by the standard deviation for each variable.
Unfortunately, this measure is large even if only one outlier was perturbed highly
and all values are exactly the same as in the original data set.

Other measures are considered in [12] and [4]. Measures of information loss
which compare univariate statistics of the original data and the perturbed data
are for example the sum of the differences of the mean or medians. Measures which
compare multivariate statistics of the original data and the perturbed data evalu-
ate differences of the correlation matrices or loadings in principal component anal-
ysis. In our study we compare the eigenvalues of the classical covariance and the
robust covariance [21] of the original data with the ones from the perturbed data.
Other kinds of measures of information loss are discussed in [3].

Improved measures of information loss has been suggested by [35] and are also
implemented in sdcMicro as well as robust measures (see in the package manual
of sdcMicro).

1.3 Disclosure Risk

In [36] a measure of disclosure risk is proposed which is based on distances
and assumes that an intruder has additional information (disclosure scenarios)
so that he can link the masked record of an observation to its original value
(see e.g. [34]). Given the value of a masked variable it is checked whether the
corresponding original value falls within an interval centered on the masked
value. The width of the interval is based on the rank of the variable or on its
standard deviation [36]. However, this interval does not depend on the scale
of the actual value and therefore the length of the interval is equal for non-
outlying and outlying values. However, outlying observations should be much
more perturbed than non-outliers.
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Another type of measures of disclosure risk - the value disclosure risk - is
extensively used, e.g. by [5]. The main goal of this measure is to evaluate the
gain in explanation of parameters or variables when perturbed data are released.

[37] suggests a new and more realistic measures of disclosure risk which ac-
counts for outlying observations by using robust Mahalanobis distances. The
robustification was done using the MCD-estimator [21].

2 Robustification of GADP and Shuffling

When classical methods are fitted to data which include outliers one may get
unrealistic estimation results. On the other hand robust methods are able to
describe the majority of the data and to detect outliers. In the context of gadp
and shuffling it is then possible to perturbate this majority of the data reasonable
but it is not possible to perturbe or generate the outliers in a reasonable way.
Therefore high data utiltiy cannot be reached with non-robust nor with robust
procedures. Therefore, we propose to use robust procedure both for the non-
outliers and for the outliers seperately. Please note that when using mixture
models to describe the data the same problems with outliers occur.

It is easy to see that classical shuffling procedures are influenced by outly-
ing observations because within the procedure a rank based covariance matrix
estimation and a least squares regression fitting is applied.

In order to robustify shuffling one has to modify the following conditions:

– Choose a robust regression method with a high breakdown point instead of
least squares estimation. The breakdown point of an estimator measures the
maximal percentage of the data points which may have been contaminated
before the estimates become completely corrupted.
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Fig. 1. LEFT: The original bivariate normal distributed data (circles) and the shuffled
data (crosses) do have a quite similar behavior. RIGHT: The original data consists of
bivariate normal distributed data (non-outliers) plus a shifted outlier group and the
shuffled data (crosses) show a quite dissimilar behavior.
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Fig. 2. LEFT: The original bivariate normal distributed data (circles) and the shuffled
data (crosses) do have a quite similar behavior. RIGHT: The original data consists of
bivariate normal distributed data (non-outliers) plus a shifted outlier group and the
shuffled data (crosses) also show a quite similar behavior.

– Choose a robust estimator with a high breakdown point to estimate the
correlation between the confidential and the non-confidential variables.

– Define outliers to be the observations with robust Malahanobis distances
larger than

√
χ2

(0.975, p) with p being the number of variables.
– Apply shuffling to non-outlying observations.
– Apply another perturbation method to the outlying observations.

In Figure 1 as well as in Figure 2 it is shown that shuffling (and therefore gadp
as well) will be seriously influenced by outliers while the robust shuffling proce-
dure gives reasonable results (Fig. 2; we had applied RMDM microaggregation
for the outlier part) also when the data are contaminated.

3 Results Based on Specific Artificial Data Sets

Most of the methods under consideration were already evaluated and compared
based on real data in [4], [1] and [8] (see also in the R online help files of package
sdcMicro [7]). In this section we will investigate artificial data sets featuring
different outlier scenarios.

Each method was applied to several bivariate data sets which are visualized at
the top of Table 2. The first two data sets follow a bivariate normal distribution
with uncorrelated (first data set) and correlated variables (second data set). The
only difference between data sets 1 and 2 and data sets 3 and 4 is the inclusion
of a single outlier. Furthermore we test all methods on a data set that features
an outlier group.

Table 2 provides detailed information about the performance of the methods
under consideration with respect to data utility and data protection. Columns
prot. in Table 2 indicate the performance of the microdata protection meth-
ods regarding data protection while columns qual. show the performance of the
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methods with respect to the fact whether the original data structure had been
destroyed after applying a procedure.

Possible values of these columns are pass, part. and fail which mean that
the method passes, partly passes or fails the criteria. Regarding data utility we
simple look at the bivariate original data and compare it to the masked data
similar to the evaluation of shuffling in 1 and 2. When evaluating disclosure risk
we pay special attention if and how the data are perturbed, especially if the
outliers are protected sufficiently.

The classification of the masking procedure given a certain data scenario into
pass, part. and fail is rather subjective but more powerful than using one measure
of information loss or a traditional measure of disclosure risk.

This fact becomes clear when thinking of the evaluation of disclosure risk
regarding to the third graphic in Figure 2. If a method only fails to protect the
outlier a usual global measure of disclosure risk (for example measure SDID, see
[34]) would be very low. However, the protection of the probably most interesting
observation for a data intruder is essential.

Furthermore, when using certain measures the evaluation of the methods de-
pends on the chosen measures and therefore we prefer the explorative approach
of visually assessing the performance of the masking methods.

Table 2 shows that almost all methods work well, providing good quality
and data utility when the procedures are applied to normally distributed data
featuring different covariances. If outliers are included in the data most of the
classical methods have problems with respect to data utility while using robust
procedures avoid these problems. Using shuffling it is not possible to protect the
single outlier in graphic 3 and 4 since the outlier of the generated data (e.g.
with method gadp) has the same rank as the outlier of the original data for
sure and the swapped value is exactly the same as the original value. Thus it is
not possible to perturbe such an outlier using method shuffle while the robust
version avoids this problem.

When working with real complex data a minimum requirement of a method
is that they should only feature pass in Table 2. Hence, only methods clustppca,
mdav, rmd, outdect, robShuffle and robGapdp should be applied on real data sets.

4 Simulation

4.1 Design of the Simulation Study

As already indicated, all methods discussed above have been applied to synthetic,
bivariate data sets that have been sampled from a multivariate normal distribu-
tion with mean vector µ = (0, 0) and covariance matrix Σ (σii = (1, 1), σij =
(0.8, 0.8)). The data sets that have been used to assess the quality of the mi-
croaggregation procedures feature different proportions of outliers (from 0% up
to 40%). In the simulation study we considered shifted outliers that have also
been generated by a multivariate normal distribution. However, the mean vec-
tor of the outlying observations is different (µout = (10, 0)) to the mean vector of
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Table 2. Detailed check if the methods can deal with special data configurations, i.e.
which methods protect the underlying data well and which methods preserve the data
structure
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cor, outlier

prot. qual. prot. qual. prot. qual. prot. qual. prot. qual.

additive pass pass pass pass part. part. part. part. pass pass

correlated pass pass pass part. pass fail pass fail pass fail

correlated2 pass pass pass pass part. part. part. part. pass pass

restr pass pass pass pass pass pass pass pass pass fail

ROMM pass pass pass pass pass pass pass pass pass fail

outdect pass pass pass pass pass pass pass pass pass pass

swappNum (p=15) pass pass pass fail pass fail pass fail pass part.

swappNum (p=40) pass pass pass fail pass fail pass fail pass fail

single pass fail pass fail pass fail pass fail pass part.

onedims pass pass pass pass pass part. pass part. fail pass

influence pass pass pass pass pass part. pass part. pass pass

pca pass pass pass pass pass part. pass pass pass fail

clustpppca pass pass pass pass pass pass pass pass pass pass

mdav pass pass pass pass pass pass pass pass pass pass

rmd pass pass pass pass pass pass pass pass pass pass

gadp pass pass pass pass pass pass fail pass pass fail

shuffle pass pass pass pass fail pass fail pass pass fail
robGadp pass pass pass pass pass pass pass pass pass pass

robShuffle pass pass pass pass pass pass pass pass pass pass

the non-outliers. Furthermore, different correlations between the variables have
been considered by adjusting the covariance matrix.

We also assess the stability of the different microaggregation methods with
respect to measures for data utility and risk. Thus, a total number of 300 data
sets was generated for each combination of outlier percentage and correlation be-
tween the two variables. All methods were then applied to all data sets featuring
a given correlation and outlier percentage. Analyzing the results it is possible to
discuss which methods are providing stable outcomes in terms of data quality
(protection) and data utility.

4.2 Simulation Results

The following results are based on a simulation study using a total of 1000
simulation runs. The results show again how the existence of outliers influences
some microprotection procedures. All the following graphs show the median of
the 1000 simulation runs given the outlier fraction.

The first results (displayed in the graphics at the top of Figure 3) are summa-
rizing results of information loss and disclosure risk measures which are based
on distances between the perturbed and the original data. The graphics at the
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Fig. 3. TOP LEFT: IL1s information loss measure versus the amount of shifted out-
liers. TOP RIGHT: disclosure risk ([34]) versus the amount of outliers in the generated
data sets. BOTTOM LEFT: Information loss based on differences of the eigenvalues
of the robust covariances between original and perturbed data versus the amount of
outliers. BOTTOM RIGHT: weighted disclosure risk based on robust Mahalanobis
distances versus the amount of outliers.

bottom of Figure 3 summarize the simulation results based of an information
loss criteria which is based on absolute differences between the eigenvalues of the
robust covariance matrices in the original and the perturbed data and disclosure
risk criteria which is based on robust Mahalanobis distances and neighbourhood
comparisons (see [37]).

The graphic at the top left of Figure 3 shows the influence of outliers to var-
ious methods based on the IL1 information loss measure. This measure does
not evaluate how well certain statistics are preserved. It only evaluates distances
between the original and the preserved data. Therefore, shuffling and gadp ex-
hibit the highest “information loss” and low “disclosure risk”. If the amount
of outliers in the data increases, also the information loss criteria shows higher
values. This indicates the influence of outliers to these methods. This is not the
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case for robust shuffling. It is also clearly visible that the RMDM (denoted as
rmd) method performs better than mdav. Naturally, these two methods have
high “risk of disclosure” since only distances are evaluated but the advantages
of microaggregation - the aggregation of observations which provides a good
protection by itself - is not considered in this risk measure.

The simulation results shown in the bottom of Figure 3 are based on more
realistic measures of information loss and disclosure risk. These measures take
the multivariate behavior and the risk with respect to robust Mahalanobis dis-
tances into account. Microaggregation methods rmd and mdav perform again
very well and also robust shuffling gives quite good results. Shuffling, ROMM,
gadp and adding noise are highly influenced by outliers and perform poorly. The
“shift” between 0 percent outliers and 2.5% outliers in the graphic at the bottom
right of Figure 3 occurs for many methods. This “shift” indicates that even a
few outliers have influence on these methods which results in poor perturbation
quality if the data contains outliers. It is self-evident that poor results regard-
ing information loss often indicate low disclosure risk, i.e. if the (multivariate)
structure of the data is completely destroyed not much can be uncovered by an
intruder.

5 Conclusion

We have conducted a large simulation study considering various outlier scenarios
and different correlations between the variables. Only a few results in a very
comprehensive form could be presented in this paper in order to stay within the
limit of pages.

Outliers are virtually present in every data set from official statistics and
therefore perturbation methods for numerical variables must be able to deal
with inhomogeneous data sets. Furthermore, outlying observations surely possess
a higher risk for re-identification and it is essential that the methods protect
these outliers properly. On the other hand, a protection method should not
destroy the multivariate data structure. We showed that many methods are
heavily influenced by outliers which results in poor quality regarding data utility
and protection.

We showed that some classical methods are not able to deal with special data
configurations (see Table 2). These methods may not be suitable for applications
to real world data sets. Nevertheless, some of the most popular methods which
fail under such data configurations have been included in the simulation study
together with robust modifications of these methods. However, some methods
(mostly methods for synthetic data generation) were excluded from the simula-
tion study because it is clear that these methods can not deal with data that
feature outliers.

The results of the simulation study showed some procedures performed poorly
when applied to data that are contaminated with outliers. Analyzing the results
it turned out that methods rmd, clustpppca, mdav and robust shuffling performed
very well. In many situations rmd outperformed all other methods (see Fig. 3).
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With model based procedures one may run into serious problems when mask-
ing real complex data including outliers. The robustification of such methods,
like our proposed robust shuffling procedure, makes it possible to deal with data
contamination in an efficient way.
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Abstract. In this paper, we provide a preliminary investigation of t-
copulas for perturbing numerical confidential variables. A perturbation
approach using Gaussian copulas has been proposed earlier. However,
one of the problems with the Gaussian copulas is that it does not pre-
serve tail dependence. In this investigation, we show that the t-copula
can be used effectively to provide all the benefits that a Gaussian copula
provides and, in addition, maintain tail dependence as well. We illustrate
this approach using two examples. We hope to perform a comprehensive
investigation of this approach in the future.

Keywords: Data Masking, Data Perturbation; Copula; Tail Dependence.

1 Introduction

Suppose that a certain Information Organization (IO) has collected information
on M confidential variables X = (X1, . . . , XM ), and L nonconfidential variables,
S = (S1, . . . , SL) for a set of N units. The resulting micordata, D0, can be
represented as an N × (M + L) partitioned matrix

D0 = (X̃
...S̃) (1)

where X̃ is the N ×M matrix containing the collected information on the confi-
dential variables, and S̃ is the N×L matrix containing the collected information
on the nonconfidential variables. The i-th row of X̃ and S̃, that we will denote
by xi = (xi1, . . . , xiM ) and si = (si1, . . . , siL), represent the M -dimensional and
the L-dimensional vectors of the confidential and non confidential values for the
i-th unit in the dataset.

Because of confidentiality concerns the microdata, D0, cannot be released to
the users. Some type of masking must be applied to D0 before release. One
possibility is to replace the confidential values X̃ with perturbed values Ỹ and
release DM,

DM = (Ỹ
...S̃).
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Ideally we would like to find a perturbation method to generate Ỹ such that
disclosure risk is minimized and data utility is maximized. Within the condi-
tional distribution approach (CDA) of [6] the optimal procedure generates Ỹ
from the conditional distribution of X given S. Such an optimal procedure,
however, requires complete knowledge of the joint distribution of (X,S) and the
ability of simulating from the conditional X|S = s. An approximation to this
optimal procedure, known as C-GADP, is presented in [10]. It is based on a
Gaussian copula, and it only requires knowledge of the marginal distributions
of the original data. Rather then generating Ỹ from the conditional distribu-
tion of X given S, C-GADP generates Ỹ from the conditional distribution of
X′ given S′, where (X′,S′) is a random vector whose distribution is expressable
in terms of a Gaussian copula with correlation matrix, ρ, estimated from the
Spearman rho correlation matrix ρoriginal

S of the original data, using the rela-
tionship ρij = 6/π · arcsin[ρoriginal

S (i, j)/2], and marginals estimated from the
original data as well. In [10] it is shown that when the sample size of the original
data is sufficiently large, the C-GADP perturbation procedure preserves ap-
proximately the margins and the rank-order correlation (and thus monotonic
relationships) of the original data while minimizing disclosure risk (at least
within the CDA framework of [6]). As noted by the authors, however, the
C-GADP approach cannot capture and correctly reproduce the phenomenon
of dependence in extreme values (or tail dependence). In this paper we address
this issue implementing a copula based perturbation procedure, that we called
t-copula perturbation (TCP), which, as the name indicates, is based on the t-
copula. We show that TCP can be used effectively to provide all the benefits that
the C-GADP method would provide and, in addition, maintain some important
type of tail dependence.

The idea of masking data by estimating its distribution from a given data
set and generate fake data from the estimated distribution is not exclusive of
the CDA approach that underlies the derivation of the TCP procedure proposed
here. The multiple imputation approach suggested by [9], its variant adopted by
[5], and their generalizations (see, for example, [8]), or the IPSO approach of [2],
to mention just a few, are also based on the same idea. The relation of the CDA
approach that we use here to these and other masking procedures is discussed in
details in [6] (section 4). We do not investigate this relation any further in the
paper. The interested reader can refer to [6] and the references therein.

In Section 2 we briefly introduce the notion of copula, and describe with some
details relevant features of the Gaussian and t-copula. Section 3 formalizes the
notion of tail dependence and illustrates the poor perfomance of C-GADP when
tail dependence is present with an example. In Section 4 we present the new
TCP perturbation procedure that extends C-GADP and that can adjust the
perturbation depending on the degrees of tail dependence in the original data.
Section 5 illustrates the performance of the proposed TCP procedure with two
examples with and without tail dependence. Section 6 summarizes the main
results of the paper and outlines ideas of future work.
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2 Gaussian and t-Copulas

A p dimensional copula, C is a p-dimensional distribution function on the unit
cube [0, 1]p with uniformly distributed marginals. Sklar’s Theorem (Sklar 1959)
states that every joint distribution function F of a p-dimensional random vector,
with marginals CDF F1, . . . , Fp can be written as,

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp) (2)

for some copula C, which is uniquely determined on [0, 1]p for distributions F
with absolutely continuous margins. Conversely any copula C may be used to
“join” any collection of univariate CDF F1, . . . , Fp to create a multivariate CDF,
F, with margins F1, . . . , Fp.

Copulas have been playing a prominent role in multivariate analysis due to
the fact that several types of dependence of interest in applications are copula
based, that is they only depend on the copula function C and are indepen-
dent of the margins. These types of dependence include, among others, the well
known Spearman’s rho and Kendall’s tau measures of concordance and the co-
efficients of lower and upper tail dependence that we describe with some details
in the next section. As such copulas provide a natural way to study and mea-
sure dependence between random variables. The primary applications of copulas
have been to combine specified (arbitrary) marginal distributions into joint dis-
tributions that exhibit certain specified dependence behaviour. [7] serves as a
good introduction. A variety of copula functions have been proposed and inves-
tigated in the research literature. The selection of a copula function depends
on the specific problem under consideration. Here we restrict our attention to
the Gaussian and the t-copula that we define next. A k-dimensional Gaussian
copula parameterized with product moment correlation matrix ρ can be written
as:

CGa
ρ (u) = Φρ(Φ−1(u1), . . . , Φ−1(uk)),

where Φρ is the joint CDF of a k-dimensional multivariate standard normal
distribution with correlation matrix ρ and Φ−1 is the quantile function of the
univariate standard normal distribution. Similarly, a k-dimensional t-copula pa-
rameterized with product moment correlation ρ, and degrees of freedom ν can
be written as,

Ct
ρ,ν(u) = tν,ρ(t−1

ν (u1), . . . , t−1
ν (un)), (3)

where tν,ρ represents the joint CDF of a k-variate Student t distribution with
location 0, scale and correlation matrix ρ, ν degrees of freedom and t−1

ν is
the quantile function of a univariate t distribution with ν degrees of freedom.
Note that the Gaussian copula can be obtained as limiting of the t-copula
as ν → ∞. An important property of the Gaussian and t-copula (and more
in general of elliptical copulas) that we will use later in the paper is the
following:
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Preposition. Let X be a k-dimensional random vector whose distribution can
be expressed either in terms of a Gaussian copula, CGa

ρ or in terms of a
t-copula Ct

ρ,ν . Let also ρτ = {ρτ (ij)}i,j=1,...,k be the k × k Kendall Tau
correlation matrix of X. Then we have:

ρτ (i, j) =
2
π
· arcsin(ρij) (4)

where ρij is the (i, j) element of ρ.

The Gaussian (t-) copula can be thought of as representing the dependence
structure implicit in a multivariate Gaussian (t) distribution. Gaussian cop-
ulas have been extensively used in modeling non normal data due to their
flexibility and analytical tractability (see, for example, [3]). As we commented
in the introduction the C-GADP method in [10], which approximately pre-
serves marginals and monotonic relationships in the original data, is based
on a Gaussian copula with correlation matrix ρ estimated from the Spear-
man rho correlation matrix ρoriginal

S of the original data, using the relationship
ρij = 6/π · arcsin[ρoriginal

S (i, j)/2], and marginals estimated from the original
data as well. One important limitation of the Gaussian copula, however, is that
it is not able to capture the phenomenon of dependence in extreme values. The
t-copula, on the other hand, does have such ability and this, in part, explains its
success in applications involving, for example, modeling of financial data such
as return data for which dependence in extreme values is often observed.

In the next section, we introduce the notion of tail dependence and illustrate
the ability of the t-copula to maintain this property better than the Gaussian
copula. Consequently, we also show that a perturbation approach based on the
t-copula preserves tail dependence (if any) present in the original data better
than a perturbation approach based on the Gaussian copula.

3 Tail Dependence

The notion of bivariate tail dependence relates to the amount of dependence in
the upper-quadrant tail or in the lower-quadrant tail of a bivariate distribution.
It is a concept relevant to dependence in extreme values. The following definition
formalizes the notion of lower and upper tail dependence ([7], page 214).

Definition: Let X and Y be continuous random variables with distributions
functions F and G respectively. The upper tail dependence parameter λU is
the limit (if it exists) of the conditional probability that Y is greater than
the 100α percentile of G given that X is greater than the 100α percentile of
F as α approaches 1, i.e.,

λU = limα→1−P (Y > G−1(α)|X > F−1(α)).

Similarly the lower tail dependence parameter λL is defined as

λL = limα→0+P (Y ≤ G−1(α)|X ≤ F−1(α)).
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It can be shown that these measures are copula based, i.e. they only depend on
the copula C of (X1, X2) regardless of the margins. When these coefficients are
strictly greater than zero the copula tends to generate joint extreme events. If
λL > 0, for example, we talk of tail dependence in the lower tail; if λL = 0 we talk
of independence in the lower tails. For the copula of an elliptically symmetric
distribution, like the Gaussian or the t copula, the two measures λU and λL

coincide, and are denoted simply by λ. For the Gaussian copula the value of λ
is zero, for the t- copula is given by ([4], page 114):

λ = 2 · tν+1(−
√

ν + 1 ·
√

1− ρ/
√

1− ρ). (5)

While tail dependence, as presented here is an asymptotic concept, the next
example illustrates its practical implications and the poor performance of C-
GADP when tail dependence is present.

3.1 Example 1

To illustrate the behaviour of the C-GADP approach in the presence of tail
dependence we simulated a microdata M1 consisting of 10000 i.i.d. draws from
a three dimensional random vector (X1, X2, S1) with distribution function ex-
pressable in terms of a t-copula Ct

ρ,ν with ν = 2 degrees of freedom, correla-
tion matrix ρ = {ρij}i,j=1,2,3, ρ12 = 0.61, ρ13 = 0.65, ρ23 = 0.49 and normal
marginals

X1 � N(0, 2); X2 � N(3, 1); S1 � N(4, 3); (6)

where N(µ, σ) denotes a normal distribution with mean µ and standard deviation
σ. By construction the microdata M1 does have tail dependence. In particular,
using (5), we have that the coefficients of tail dependence for M1 are:

λX1,X2 = 0.46; λX1,S1 = 0.48; λX2,S1 = 0.39.

Bivariate distributions of the original microdata M1 are shown in Fig. 1. To
facilitate the visualization of the tail dependence in the microdata M1, the ver-
tical and horizontal lines in Fig. 1 mark the 0.005 and the 0.995 quantiles of
the marginal distributions. We applied C-GADP to the original microdata M1

using X1 and X2 as confidential variables and S1 as nonconfidential variable.
Spearman’s rho, ρS , and Kendall’s tau, ρτ , for original and C-GADP masked
data are reported in table 1.

Table 1. ρS and ρτ for original and C-GADP masked data: Example 1

ρOriginal
τ ρC−GADP

τ ρOriginal
S ρC−GADP

S

1.00 0.42 0.44 1.00 0.40 0.42 1.00 0.56 0.59 1.00 0.57 0.60
0.42 1.00 0.33 0.40 1.00 0.32 0.56 1.00 0.45 0.57 1.00 0.46
0.44 0.33 1.00 0.42 0.32 1.00 0.59 0.45 1.00 0.60 0.46 1.00
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Fig. 1. Bivariate distributions of the original data: Example 1
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Fig. 2. Bivariate distributions, C-GADP masked data: Example 1

Fig. 2 shows the bivariate distributions of the confidential and nonconfidential
variables in the C-GADP masked data. As expected C-GADP preserves well the
two measures of concordance, ρS and ρτ as well as the marginal distributions (not
shown). In terms of preserving bivariate distributions,however,C-GADPperforms
quite poorly. The practical implications of tail dependence, in this example, can be
seen by comparing joint quantile exceedance probabilities. Suppose, for example,
that the two sensitive variables X1 and X2 represent daily returns of two stocks
with correlation 0.58. Based on the original data the probability p1 that on any day
the two returns would drop below the 0.5% quantile of their marginal distribution
(evaluated as the fraction of points that follows in the lower quadrant of the bottom
left plot in Fig. 1) would be 0.0027. The estimation of p1 using C-GADP is 0.0003.
This means that using the Gaussian copula a data user would estimate that in the
long run such an event would happen once every 3333 days on average, i.e roughly
once every 13 years (assuming 260days in the stockmarketyear). In the truemodel,
however, the event occurs with a probability that is 9 times higher or roughly once
every 1.42 years.
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4 The t-Copula Perturbation

Using the notation in the introduction, let Fi, i = 1, . . .M be the CDF of the
ith component of the confidential random vector X, and let Gj , j = 1, . . . L be
the CDF of the jth component of the nonconfidential random vector S. It is
assumed that both the Fi’s and the Gj ’s are strictly increasing. The t-copula for
the perturbation case can be written as:

Ct
ρ,ν(u) = tν,ρ(X∗,S∗)

where X∗ and S∗ are defined as follows:

X∗
i = t−1

ν (Fi(Xi)), i = 1, . . . , M (7)
S∗

j = t−1
ν (Gj(Sj)), j = 1, . . . , L. (8)

Under the assumption that the joint distribution of the original variables can
be expressed in terms of the copula in (3), the joint distribution of (X∗,S∗) is
multivariate Student-t with location µ̃, scale matrix Σ̃ and ν degrees of freedom,

(X∗,S∗) � St(µ̃, Σ̃, ν) (9)

where
µ̃ = 0; Σ̃ = ρ.

The parameters ρ and ν need to be estimated from the data. It is useful to
represent the mean vector µ̃ and the scale matrix Σ̃ using the partition:

µ̃ = (µ̃X , µ̃S); Σ̃ =
(

Σ̃XX Σ̃XS

Σ̃SX Σ̃SS

)
.

From (9) and basic properties of the multivariate Student-t distribution (see, for
example, [1], proposition 4), the conditional distribution of X∗ given S∗ = s is
still a multivariate Student t of dimension M , with location µ̃X.S , scale matrix
Σ̃XX.S and degrees of freedom νX.S ,

X∗|S∗ = s � St(µ̃X.S , Σ̃XX.S , νX.S) (10)

where:
µ̃X.S = µ̃X + Σ̃XSΣ̃−1

SS(s− µ̃S), νX.S = ν + L,

Σ̃XX.S = [
ν + (s− µ̃S)T Σ̃−1

SS(s− µ̃S)
ν + L

] · [Σ̃XX − Σ̃XSΣ̃−1
SSΣ̃SX ].

Under the assumption that the marginal CDF of the original variables are strictly
increasing, the rank order correlation matrix of the original data is the same as
the correlation matrix of the transformed data D0

∗,

D0
∗ =

⎛
⎝ x∗

1 s∗1
. . . . . .
x∗

N s∗N

⎞
⎠ (11)
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where for any i ∈ {1, . . . , N},

x∗
i = (x∗

i1, . . . , x
∗
iM ), with x∗

ih = t−1
ν (Fh(xih)) h = 1, . . . , M

s∗i = (s∗i1, . . . , s
∗
iL), with s∗ij = t−1

ν (Gj(sij)) j = 1, . . . , L. (12)

One can evaluate the Kendall’s tau correlation matrix of the original data
ρOriginal

τ and estimate the correlation matrix ρ in (9) by ρ̂ using (4). Once ρ
have been estimated the degrees of freedom can be estimated fitting a t-copula
with correlation matrix ρ̂ to the original data.

The algorithm to implement the t-copula perturbation would be then as
follows:

T-copula Perturbation Procedure (TCP)
Step 1. Identify the marginal distributions of attributes X1, . . . , XM , S1,. . . ,SL.

Denote by F̂Xi and ĜSj , i = 1, . . . , M , j = 1, . . . , L the estimated marginal
CDF.

Step 2. Compute the Kendall’s tau matrix of the original data set, ρOriginal
τ .

Step 3a. Compute product moment correlation ρ̂ using ρOriginal
τ and (4).

Step 3b. Fit a t-copula with correlation matrix ρ̂ to the original data in order
to obtain an estimate ν̂ of the t-copula’s degrees of freedom ν.

Step 4. Compute the matrix S∗ of transformed nonconfidential variables,

S∗ = (s∗1
...s∗2

... . . .
...s∗N )T (13)

with s∗i as in (12), i = 1, . . . , N with Fi’s and Gj ’s as in step 1.
Step 5. For each i ∈ {1, . . . , N} generate y∗

i from the conditional distribution
of X∗|S∗ = si in (10)

Step 6. For each i ∈ {1, . . . , N} compute yi from y∗
i as follows:

yi = F−1
i (tν(y∗

i ))

Step 7. In the original data in (1) replace X̃ by Y ,

Y = (y1

...y2

... . . .
...yN )T (14)

and release to the users (Y,S) plus the information about: (i) the t-copula model
used for the perturbation; (ii) the estimated parameters of the t-copula model
(ρ̂, ν̂).

It can be shown that the proposed procedure is equivalent to replacing the
original confidential variables with i.i.d. draws from the conditional distribution
of a X′′|S′′ of a random vector (X′′,S′′) with joint distribution expressable in
terms of a t-copula with marginals F̂Xi ’s and ĜSj ’s, product moment correlation
matrix ρ̂ and degrees of freedom ν̂ as in steps 1, 3a and 3b of the TCP procedure.

For large sample size C-GADP, preserves approximately the estimated
marginals (F̂Xi ’s and ĜSj ’s) and the Kendall-tau correlation matrix (ρOriginal

τ )
(and thus monotonic relationships) of the original data. In addition to C-GADP,
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however, when the original data present dependence in extreme values that can
be described by a multivariate t-copula, the TCP procedure preserves, approxi-
mately, tail dependence as well. However, as we describe in section 6, the strong
symmetry of the copula might reduce the range of applications and general-
izations of t-copula that introduce more asymmetry might be preferred. We
illustrate the application of the t-copula in the next section.

5 Examples of Gaussian and t-Copula Based Perturbation

The following two examples illustrate the performance of the t-copula and com-
pare it with the the C-GADP approach for data set with and without tail
dependence.

5.1 Example 1: Continued

We applied the t-copula perturbation to the microdata M1 of example 1 again
using X1 and X2 as confidential variables and S1 as nonconfidential variable. As
observed in section 3.1 this is a microdata with tail dependence.

The estimated value of ν for this case was ν̂ = 2. Spearman’s rho, ρS , and
Kendall’s tau, ρτ , for original and t-copula perturbed data are reported in table 2.

Fig. 3 shows bivariate distributions of the confidential and nonconfidential
variables in the t-copula masked data. As expected the t-copula pertrubation
performs as well as C-GADP in preserving the two measures of concordance,
ρS and ρτ and the marginal distributions (not shown here) and outperforms
C-GADP in terms of preserving bivariate distributions and tail dependence.

As an illustration of practical implications of tail dependence, in example 1
we supposed that the two sensitive variables X1 and X2 were daily returns of
two stocks. We observed that based on the original data the probability p1 that
on any day the two returns would drop below the 0.5% quantile of their marginal
distribution would be 0.0027. The estimation of p1 using C-GADP instead was
0.0003 quite far from the “true” value 0.0027. We also observed that, as a result
of this discrepancy, C-GADP would provide a very poor estimate of the long
run proportions of days in which the event is observed (under C-GADP the
event would occur once every 13 years while under the original data the event
would occur roughly once every 1.42 years). The t-perturbation, on the other
hand would produce p1 = 0.0022 quite close to the “true” 0.0027 leading to
approximately the same conclusions as the original data in terms of long run

Table 2. ρS and ρτ for original and TCP masked data: Example 1

ρOriginal
τ ρt−copula

τ ρOriginal
S ρt−copula

S

1.00 0.42 0.44 1.00 0.42 0.44 1.00 0.56 0.59 1.00 0.57 0.59
0.42 1.00 0.33 0.42 1.00 0.33 0.56 1.00 0.45 0.57 1.00 0.45
0.44 0.33 1.00 0.44 0.33 1.00 0.59 0.45 1.00 0.59 0.45 1.00
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Fig. 3. Bivariate distributions for TCP masked data: Example 1

proportions of days in which the event is observed. Using the t-copula masked
data, in fact, the event would occur once every 455 days (1.75 years).

5.2 Example 2: t-Perturbation without Tail Dependence

In order to illustrate and compare the performance of the Gaussian and t-copula
perturbation approaches for masked data with no tail dependence, we generated
an artificial microdata M2 consisting of 10000 i.i.d. draws from a three dimensional
random vector (X1, X2, S1) whose joint distribution can be expressed in terms of a
Gaussian copula with product moment correlation matrix ρ and normal marginals
as in example 1. By construction the microdata M2 has no tail dependence. We ap-
plied to M2 the C-GADP and the t-copula perturbation procedures using X1 and
X2 as confidential variables and S1 as nonconfidential variable. For the t-copula
perturbation approach the MLE estimator of ν at step 4 of the t-perturbation pro-
cedure was found using a grid 1, 2, . . . , 1000 for ν. The estimation of ν, for this case

Table 3. ρτ for original, C-GADP and TCP masked data: Example 2

ρτ Original ρτ C-GADP ρτ T-GADP

1.00 0.42 0.45 1.00 0.43 0.45 1.00 0.41 0.44
0.42 1.00 0.33 0.43 1.00 0.33 0.41 1.00 0.32
0.45 0.33 1.00 0.45 0.33 1.00 0.44 0.32 1.00

Table 4. ρS for original, C-GADP and TCP masked data: Example 2

ρS Original ρS C-GADP ρS T-GADP

1.00 0.60 0.63 1.00 0.61 0.63 1.00 0.59 0.62
0.60 1.00 0.48 0.61 1.00 0.48 0.59 1.00 0.46
0.63 0.48 1.00 0.63 0.48 1.00 0.62 0.46 1.00
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was ν̂ = 1000 (the maximum value in the grid). Spearman’s rho and Kendall’s tau
for original, C-GADP and TCP perturbed data are reported in tables 3 and 4 re-
spectively. Figure 4 compares bivariate distributions of the confidential variables
in the M2 microdata and in the corresponding C-GADP and t-copula masked ver-
sions. As expected the t-copula perturbation approach, in this case, is approxi-
mately equivalent to the C-GADP approach and both methods perform very well
in preserving marginal (not shown here), bivariate distributions and the concor-
dance measures ρS and ρτ .
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Fig. 4. Bivariate distributions of the sensitive variables under the original data and
the C-GADP and t-copula perturbed data: Example 2

5.3 Discussion

The two examples presented illustrate that both C-GADP and the t-copula
perturbation method preserve the marginals and concordance measures ρS and
ρτ regardless of the microdata to be masked (and of the degree of tail dependence
in the data).

If we focus on association between pairs of variables in the original data,
however, while the C-GADP approach preserves bivariate distributions when no
tail dependence is present (see Fig. 4) it performs quite poorly in the presence
of tail dependence (see Fig. 2). The TCP method, on the other hand, works
fairly well in both cases. The extra parameter ν in the t-copula approach, allows
the TCP method to adjust for different degrees of tail dependence, at least for
those cases for which tail dependence can be properly described by a t-copula.
For these cases, if the size of the original data is sufficiently large, absence of
tail dependence in the data will results in a estimate ν̂ of ν very large and the
t-perturbation method coincides with the C-GADP approach (this is the case in
the example 2). On the other hand for sufficiently large data sets, presence of
tail dependence in the data will results in a “small” value of the estimate ν̂ of ν
and the TCP method correctly captures the tail dependence outperforming the
C-GADP approach (as in example 1).
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6 Conclusions

The objective of this paper was to illustrate the usefulness of using the t-copula
for perturbing numerical confidential variables. This approach extends the Gaus-
sian copula approach suggested in the C-GADP procedure developed in [10]. The
results indicate that the TCP approach provides all the benefits of the C-GADP
approach. Additionally, the TCP approach maintains some important types of
tail dependence that the C-GADP approach does not. It must be emphasized
that even though we have used Gaussian marginals as examples, the TCP ap-
proach will maintain monotonic relationships and symmetric tail dependence
among non-Gaussian marginals as well. These results also provide important
information to the data provider. In general, the data provider is interested in
providing the data of the highest possible quality subject to the condition that
disclosure risk is minimized. The above results indicate that using the TCP ap-
proach for data perturbation would provide data of higher quality than other
approaches while minimizing the risk of disclosure (at least within the CDA
framework of [6]).

Despite the attractive features of the proposed TCP procedure, there are
several issues that need to be addressed for a proper use of the method (strong
symmetry of the t-copula, empirical assessment of disclosure risk, performance of
the method for data sets with diverse dependence structures). Several extensions
of the TCP approach are also possible. We hope to address this issue and evaluate
the extension in the complete version of the paper.
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Abstract. The access of the scientific community to cross-section data in the 
field of business statistics in Germany has considerably improved over the last 
few years. The purpose of the project on “Business Panel data and de facto ano-
nymisation” is to extend the data infrastructure in Germany for panel data on 
local units and on enterprises, so that business statistical data can be made 
available to empirical researchers for use on their own workstations. This paper 
gives an overview of the project, describes the data sets and the anonymisation 
methods which are considered to create scientific use files. The work to assess 
the analysis potential and anonymity of the data is outlined as well. Also, an ex-
ample is given, applying anonymisation methods to achieve the best possible 
results regarding the well known trade off between data confidentiality and 
analysis potential.  

1   Introduction 

The bases for anonymising german enterprise microdata were developed in the project 
on “De facto anonymisation of business microdata” (Lenz et al. 2006, Ronning et al. 
2005). A major result of the project was that so called de facto anonymisation of 
business statistical data can be achieved on a cross-section basis. De facto anonymisa-
tion means, that the costs of trying to reidentify records in the dataset must be higher 
than the benefit gained by the disclosed information. In this case a rational data in-
truder would not even try to deanonymise the dataset, because he or she would have 
to put an unreasonably high amount on work, time, manpower and specialized knowl-
edge in the data attack. The project on “Business Panel data and de facto anonymisa-
tion”1 started at the beginning of 2006 and is intended to clearly improve both, the 
data infrastructure in Germany regarding panel data on local units and enterprises and 
the access of the scientific community to those data. The project deals with an im-
provement of the data supply by longitudinal linkage of statistics which so far have 
                                                           
1 The project is carried out jointly by the Institute for Employment Research (IAB), the Institute 

for Applied Economic Research (IAW), the Research Data Centre (FDZ) of the statistical 
offices of the states and the Research Data Centre of the Federal Statistical Office. 
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been used mainly on a cross-section basis. At the end of the project de facto ano-
nymised files, so called scientific use files will be created. Scientific use files are 
licensed files that can only be used by institutions doing independent scientific re-
search. Those scientific use files can be released to the users after they have signed a 
contract with the data distributing institution. They should contain sufficient analysis 
potential, so that they can be used for scientific analysis. It is also planned to produce 
so called public use files, which can be used by everybody and hence have to be abso-
lutely anonymised. Thus, regarding public use files the analytical validity can be quite 
low. Since the applied anonymisation methods are very strong here, it does not make 
sense to use them to gain results for scientific research, but it is still possible to use 
this material for the statistical education in universities to make the students familiar 
with panel data and statistical methods or econometric models. The project focuses on 
the cost structure survey in manufacturing, the monthly reports in manufacturing, the 
survey of investments, the industrial small units survey and the turnover tax statistics, 
which are processed as longitudinal data sets as part of the project. The local units 
panel of the Institute for Employment Research was selected for anonymisation by 
means of multiple imputation. 

As another important element of the project, the linked longitudinal data have been 
complemented by information from the official business register. The main purpose 
of that work is to identify by means of the business register (cf. Sturm 2006) reasons 
for missing data, specially demographic information about enterprises, in longitudinal 
terms and thus to increase the analysis potential of the data. As regarding turnover tax 
statistics, the turnover data have been complemented – on the basis of the business 
register – by employees data for the years 2001 to 2005.   

Panel data are demanded more and more often by scientific users because only with 
such data it is possible to show the dynamics, changes and processes over time. Another 
advantage of panel data is that unobservable heterogeneity can be considered. However, 
the positive aspects provided by panel data for research evaluations might also prove to 
be an additional challenge to anonymisation. This is because, across several waves, a 
structure in the data can be detected which gives additional knowledge to a potential 
data intruder that is helpful in reidentification attempts (Lenz 2008).  

With a view to maintaining the analysis potential of panel data it must be ensured 
that developments over time can adequately be analysed also by means of ano-
nymised data and that panel-econometric methods continue to produce consistent 
estimates (Biewen/Ronning/Rosemann 2007).  

One of the questions to be answered by the project is the extent to which the ano-
nymisation methods originally developed for cross-section data can be further devel-
oped for the anonymisation of panel data and what impact such methods have on data 
protection and on the analysis potential of panel data of business statistics. 

The outline of the paper is as follows. Chapter 2 contains a description of the data-
sets and the editing of the data in this project. Chapter 3 illustrates the anonymisation 
methods of panel data and the impacts of these methods on analytical validity. Chap-
ter 4 gives an overview about the possibilities to measure the disclosure risk to 
achieve de facto anonymity of panel data. In chapter 5 we give an example of the 
applied anonymisation methods and summarize the optimal results that could be 
achieved to level out the balance between data confidentiality and analysis potential. 
The paper ends with a summary and outlook on further work and projects.  
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2   The Data Sets of the Project 

For the longitudinal linkage and the subsequent anonymisation, business data were 
selected for which some experience is available regarding cross-section anonymisa-
tion and which are demanded most often by researchers.2  

2.1   Monthly Reports, Survey of Investments and Survey of Small Units 

Based on the local units as a unit of analysis, the monthly reports in manufacturing, 
mining and quarrying are a longitudinal linkage of the years from 1995 to 2005. They 
contain information on employees, wages and salaries, and turnover (Statistisches 
Bundesamt 2007a). The survey of investments, however, provides information on 
highly different types of investments (Statistisches Bundesamt 2007c) and basically 
contains the same local units as the monthly reports. The monthly reports represent a 
complete enumeration of the local units with 20 or more employees.3 The range of 
data is complemented by the survey of small units of the years 1995 to 2002, which 
supplies information from local units with 19 or fewer employees.  

For the panel data set, the individual data supplies have been aggregated to form an 
annual data supply. The data contain information on employees, turnover (domestic 
and foreign turnover), hours worked, wages and salaries, and investments (Konold 
2007). Wagner (2007) contains some examples of comments on the research potential 
of the monthly reports. 

2.2   Cost Structure Survey 

The cost structure survey is a stratified sample with almost 18,000 enterprises each 
year. The data of the cost structure survey in manufacturing, mining and quarrying are 
designed as a panel data set for the years from 1995 to 2005. The cost structure survey 
is suited for manifold structural analyses (Fritsch et al. 2004) and provides compre-
hensive information on output, the production factors used, and on the value added of 
enterprises with at least 20 employees (cf. Statistisches Bundesamt 2007d). The panel 
data set contains about 43,000 observations for the years 1995 to 2005. The way of 
processing allows to perform analyses both on a cross-section basis for the reference 
year and on a longitudinal basis. For the period from 1995 to 2005, there are about 
2,000 enterprises which were questioned every year. A large part of those enterprises 
come from areas fully covered (branches with few cases, large enterprises). For the 
years 1999 to 2002, there are still just under 13,300 enterprises which were ques-
tioned every year, thus providing sufficient potential for scientific analyses and shall 
cover the period for the scientific use file (Brandt et al. 2008). 

                                                           
2 In consequence of the project on “Anonymisation of business microdata”, further enterprise 

statistics such as the structure of earnings survey, could be anonymised (cf. Hafner and Lenz 
2007). 

3 An exception is 14 economic branches with 10 or more employees (cf. Statistisches Bunde-
samt 2007b/c). 
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2.3   Turnover Tax Statistics 

The longitudinal linkage of turnover tax statistics comprises a data set of a total of 
some 4.3 million observations, about 1.9 million of which can be linked for the period 
from 2001 to 2005 to form a real panel data set with observations for each year. In a 
first step, the panel data set for 2001-2005 was established for special analyses at the 
Federal Statistical Office and for remote data purposes. For every case, the file con-
tains a data set with a total of 156 variables for 5 reference years, with differing num-
bers of variables actually occurring, depending on the existence of the enterprise in 
the relevant year. Turnover tax statistics contains information on all taxable turnovers, 
turnover tax, prior tax, and duration of tax liability (Statistisches Bundesamt 2005). 

2.4   IAB Panel of Local Units 

The IAB (Institute for Employment Research) panel of local units is a representative 
survey among employers on local unit items influencing employment and covers a 
stratified sample of all local units with at least one employee subject to social insur-
ance contributions in Germany. The panel contains information allowing to perform 
analyses of the development of labour demand on the labour market in Germany. 
Items covered include information on the employment trend, weekly hours worked, 
turnover, and export share, investments and innovation in the local unit, public subsi-
dies, staff structure, vocational training and apprenticeship positions, staff recruited 
and staff leaving, search for new staff, wages and salaries, hours worked in the local 
unit, advanced training and continuing education. The local units panel has been pro-
duced every year since 1993 in western Germany and since 1996 in eastern Germany 
by the IAB research unit “Local units and employment”. The local units panel con-
tains information of the various waves on about 4,300 to a maximum of some 16,000 
local units (Bellmann 2002). 

3   Anonymisation Methods for Panel Data and the Analytical 
Validity of Anonymised Panel Data 

In the last decade a broad variety of anonymisation methods is described in literature 
(see for example Brand (2000), Höhne (2003), Ronning et al. (2005) and Rosemann 
(2006)). Anonymisation methods may be subdivided into two groups: methods reduc-
ing the information, and more recent methods modifying the values of numerical data 
(data perturbing methods). When an anonymisation concept for business micro data is 
developed a mix of these two approaches often seems to be the best solution. Informa-
tion reducing methods such as the suppression of variables or presenting key variables 
in broader categories should be preferred, provided that the analyses of interest to the 
users can still be made. However, if it seems inevitable to additionally apply ano-
nymisation measures which modify the data, a method has to be agreed upon and the 
parameters of that method need to be balanced appropriately (Lenz et al. 2006). 

In Ronning et al. (2005) most known anonymisation procedures have been rated 
both with regard to data protection and to informational content left after perturbation. 
In particular micro aggregation or stochastic noise has been found convenient for 



 Anonymisation of Panel Enterprise Microdata – Survey of a German Project 143 

continuous variables whereas “Post Randomization” (PRAM) can be recommended 
with some reservations for discrete variables. Additionally, most recently multiple 
imputation has been suggested by Rubin (1993) for data protection. 

The basic idea of (deterministic) micro aggregation is to form groups of similar ob-
jects and to substitute the original values by the arithmetic mean of this group (Mateo-
Sanz and Domingo-Ferrer 1998).4 The variants of deterministic micro aggregation 
principally differ with regard to the question whether the micro aggregation is per-
formed jointly for all numerical variables or separately for each variable.5 In the first 
case therefore the same groups are formed for different variables when determining 
the averages. In the second case (individual ranking) the groups are formed for the 
several variables separately. 

In the case of panel data we have r variables, T periods and N observations. So we 
can perform the micro aggregation (a) separately for all variables and all periods (In-
dividual Ranking), (b) separately for all variables but jointly for all periods, (c) sepa-
rately for all periods but jointly for all variables and (d) jointly for all periods and all 
variables. 

Micro aggregation preserves the expected values original but leads to a decreasing 
variance in a finite sample. Therefore Höhne (2004a) develops a variant of individual 
ranking that preserves the variances too. He builds up groups of size four. Then for 
two of these observations in group i anonymised values are given by 

)(.2/1, ii
a
i xsdxx −=  

(1) 

whereas for the two other anonymised values 

)(.4/3, ii
a
i xsdxx +=  

(2) 

is used where .ix  is the average of the variable x in group i and sd(xi) is the standard 
deviation of x in this group. 

The alternative approach of addition or multiplication of stochastic noise is one of 
the most important data perturbating methods. In the additive case the noise variable 
usually is assumed to be normally distributed with expectation zero. To increase the 
data security one can use a mixture distribution of normal distributions where the 
expectations of the underlying component distributions are unequal to zero. In the 
case of anonymisation we can restrict ourselves to a mixture distribution of two nor-
mal distributed components with expectations −µ and µ (Roque 2000, Yancey et al. 
2002, Höhne 2004b and Ronning et al. 2005). 

We achieve better protection for larger firms if we use multiplicative noise (Ron-
ning et al. 2005). In this case the expectation of the noise variable should be one and 
the values of the noise variable should be limited to the positive band. Several distri-
butions can be used, e.g. lognormal or uniform distribution. As an alternative, also in 
the multiplicative case a mixture distribution of two normal distributions is used, 
 

                                                           
4 For stochastic micro aggregation see Rosemann (2006). 
5 Also used are variants where the set of numerical variables is subdivided into groups first and 

where the variables of a group are then micro aggregated jointly (Ronning et al. 2005).  



144 M. Brandt, R. Lenz, and M. Rosemann 

where the expectations are 1−f and 1+f. The parameter f as well as the standard devia-
tions of the two components (which equal each other) is chosen in such a manner that 
the values of the noise variable remain positive. 

A special variant of a mixture distribution was proposed by Höhne (2004b). The 
main idea of this approach is that for one observed unit all values are scaled down or 
scaled up. In other words, for every unit the probability to draw from a normal distri-
bution with expectation 1−f is 0.5 and corresponds to the probability to draw from a 
normal distribution with expectation 1+f. If we adopt this anonymisation method on 
the case of panel data we can distinguish several variants for the multiplicative noise 

variable ijtw  of observation i, variable j and period t. 

ijtiijt fdw ε++= 1  
(3-1) 

ijtijijt fdw ε++= 1  
(3-2) 

ijtitijt fdw ε++= 1  
(3-3) 

ijtijtijt fdw ε++= 1  
(3-4) 

In all cases we assume ),0(~ 2
εσε Nijt  and the variable d takes on +1 and –1 with 

probability 0.5. 
Another auspicious method to anonymise panel data is multiple imputation (Rubin 

1993, Raghunathan et al. 2003). In 1993 Rubin suggested to generate fully synthetic 
data sets to guarantee confidentiality. His idea was to treat all the observations from 
the sampling frame that are not part of the sample as missing data and to impute them 
according to the multiple imputation framework. Afterwards, several simple random 
samples from these fully imputed datasets are released to the public. 

However, the quality of this method strongly depends on the accuracy of the model 
used to impute the “missing” values. If the model doesn’t include all the relationships 
between the variables that are of interest to the analyst or if the joint distribution of 
the variables is mis-specified, results from the synthetic data set can be biased. Fur-
thermore, specifying a model that considers all the skip pattern and constraints be-
tween the variables can be cumbersome if not impossible 

To overcome these problems, a related approach suggested by Little (1993)  
replaces observed values with imputed values only for variables that are publicly 
available in other databases (key variables) or for variables that contain especially 
sensitive information leaving most of the data unchanged. This approach has been 
adopted for some data sets in the US. In our project both approaches are tested in time 
with data of the IAB establishment panel (first results can be found in Drechsler et al. 
(2007) and Reiter and Drechsler (2007)).  

The methods described above should ensure confidentiality of panel data at the 
same time the usefulness of data should be gained. The analytic potential is limited on 
the one hand by the fact that certain analyses are excluded from the start by the ano-
nymisation procedures it selves because either the issue in question cannot be ana-
lysed anymore or the method to be used and equivalent methods cannot be applied 
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anymore. This could be the main problem in the case of using methods reducing the 
information. On the other hand, such limits result form anonymised data producing 
results which differ from those based on the original data. When anonymisation pro-
cedures are assessed which modify the data, the focus is on the second aspect.  

When we use data perturbating methods we have to ensure that distributional prop-
erties of the data do not change too much. However, in the project “Business Panel 
data and de facto anonymisation” the impacts of data perturbating methods on analy-
sis using special qualities of panel data are in focus. On the one hand the project 
analyses the impacts of the described data perturbating methods on descriptive distri-
bution measures where cross-sectional measures are supplemented by special aspects 
of panel data, for instance measures relating to the rates of change. On the other hand 
we focus on the effects of these methods on the estimation of econometric panel mod-
els, particularly if we use the within-estimator to control for individual unobservable 
heterogeneity. These analyses include theoretical derivations as well as simulation 
experiments and examples with data of official statistics. First results of this work are 
available. 

Biewen et al. (2007) show that the within estimator is consistent in the case of ano-
nymisation by individual ranking. These results correspond to the results of Schmid 
(2006) for the OLS-estimator. Biewen (2007) derives a consistent within-estimator in 
the case of anonymisation by multiplicative stochastic noise. The paper focuses on the 
case of no autocorrelation. Ronning (2007) deals with the effects of stochastic noise 
using a mixture distribution, for instance the method proposed by Höhne (2004b). In the 
case of panel data he focuses on the variant described in formula (3-1). However such a 
distribution will imply correlation of measurement errors. This is of special concern if 
linear (or nonlinear) models are estimated from data anonymised in such a way. This 
case so far had not received much attention since usually measurement errors are as-
sumed to be independent across variables. It can be shown that the measurement error of 
the dependent variable in this case no longer can be considered as harmless to estima-
tion. A consistent fixed effects estimator using the method of Höhne can be found in 
Ronning (2007) as well as in Biewen (2007). Ronning and Rosemann (2007) present a 
special approach of the simulation extrapolation estimator (SIMEX estimator) to tackle 
these problems also in nonlinear models. Biewen and Ronning (2007) expound the 
problems of serial auto correlation in the case of multiplicative stochastic noise. Actual 
project work deals with the method of instrument variable estimation to tackle the prob-
lems in case of auto correlated regressor variables.    

4   Approaches to Assessing De Facto Anonymity 

In order to evaluate the degree of anonymity of previously anonymised micro data, it 
was necessary to develop a technique for simulating data intrusion scenarios a poten-
tially attacking data intruder might apply. One important constellation is the so-called 
database cross match scenario. In a database cross match scenario, an attacking data 
intruder tries to assign as many external database units as possible (additional knowl-
edge) uniquely to units of an anonymised target database in order to extend the exter-
nal database by target database information. 
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In a first phase, the database cross match scenario was mathematically modelled as 
a multicriteria assignment problem, which was then converted, by way of suitable 
parameterisation, into an assignment problem with one target function to be mini-
mised. Then, the main concern was to choose the best-fitting coefficients of this target 
function. Whereas in the past a distance measure, generated across all matching vari-
ables of the two data sources (key variables and overlaps), proved to be well suited 
for the examination of cross-sectional data (Lenz 2006), it turned out that the exami-
nation of panel data requires the use of additional, more elaborated measures. As the 
information on variables, which in the case of panel data is available to a potential 
data intruder, has been collected in several waves, it seems obvious that this more 
complex structure should be reflected in the coefficients of the linear program as well. 
With that goal in mind we have implemented and tested several promising ap-
proaches. A more detailed description of these approaches can be found in Lenz 
(2008).  

4.1   Conventional Distance Based Approach 

For every numerical key variable vi and every pair of records (a,b) in the two data 
sources, the standardised square deviation is calculated. Afterwards, these component 
deviations are summed up. It may be advisable in some cases to assign additional 
weights to the various deviations on variable level. However, a weakness of that 
measure becomes apparent in cases where the definition of some key variable slightly 
differs between the two data sources, for example, if a variable such as “number of 
employees” relates to the number of all employees in absolute terms in one data set, 
whereas that number is converted into full-time workers in the other data set. 

4.2   Correlation-Based Approach 

Let ve
1,… , ve

k and vt
1,…, vt

k be ordinal key variables of the external and target data, 
respectively. We define ve and vt as variables from which k realisations have been 
drawn and calculate the empirical correlation corr(ve; vt) using Spearman’s coeffi-
cient. The less this coefficient deviates from 1 the more likely the record pair (a,b) 
belongs to the same enterprise. Note that this coefficient can be applied either in case 
of numerical (and hence also ordinal) variables or in case of categorical variables, 
whose range forms a well-ordered set. 

4.3   Distribution Based Approach 

In a panel data situation we can take it for granted that an attacking data intruder will 
have information over several years for every key variable, for example, total turn-
over of an enterprise from 1999 to 2002. In general, we can assume the existence of a 
bias between the two sources of data in these variables. In order to counteract this 
problem, we consider the annual changes of a key variable and treat them like a fre-
quency distribution of a discrete variable. Hence, we can apply statistical methods in 
order to measure the “similarity” of the frequency distributions on either side, external 
and target data. 
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4.4   Collinearity Approach 

A data intruder might have information on two key variables over a period of n years 
in both sources of data, e.g., “total turnover” (u1, … , un) and “number of employees” 
(b1, … , bn) of an enterprise. If we interpret the pairs of values (ui,bi) as realisations of 
two random variables, those units that belong together in the different data sources 
can be expected to reveal empirical correlation cofficients that are ‘similar’. It should, 
however, be considered that what is measured by correlation is just the linear interre-
lation of two variables. In special cases the two estimated correlation coefficients can 
diverge from each other very clearly, even if the variables are linked by a direct func-
tional relationship. 

Overall, risk tables can serve as a basis for the decision whether an experimentally 
anonymised data file can be rated as de facto anonymous. For example, table 1 below 
can be used to enter risks of reidentification by size class of employees and approach 
to the coefficients of the target function. 

Referring to the subsections 4.1 - 4.4 the approaches to the coefficients are denoted 
by Aconv, Acorr, Adist and Acoll. 

Table 1. Risks of re-identification by size class of employees and coefficient approach 

Class\Strategy Aconv Acorr Acorr Acoll 
20 - 49 0.25 0.08 0.08 0.06 
50 - 99 0.26 0.11 0.13 0.07 
100 - 249 0.34 0.10 0.11 0.06 
250 - 499 0.61 0.18 0.23 0.15 
500 - 999 0.72 0.52 0.63 0.28 
1 000 and more 0.85 0.37 0.45 0.30 

 
Once the coefficients d(ai,bj) are calculated, one can solve the linear assignment 

problem using classical established methods such as the simplex method. For larger 
data blocks (typically generated when dealing with tax statistics) it is recommendable 
for reasons of efficiency that approximation heuristics should be used. Fortunately, 
the usage of appropriate heuristics yields results near the optimum solution of the 
assignment problem, see Lenz (2003). 

5   Example: German Cost Structure Survey 1999 - 2002 

In this section, we focus on 13,300 target records of the German Cost Structure Sur-
vey which have been observed over four years 1999 to 2002. These data are ano-
nymised applying Höhne’s method (see section 3) setting f=0.11 and σε=0.03 as  
parameters. 

Choosing this parameter constellation on the one hand results in the fact that 62 
percent of the values change by more than 10 percent. On the other hand one can 
show that the anonymisation does not influence the descriptive distribution measures 
in a considerable way. Due to the specific construction of Höhne’s method only two 
percent of the rates of change deviate by more than ten percent from the original ones. 
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The mean of the variables as well as the mean of the rates of change over all variables 
and points in time do not vary by more than ten percent. Only three percent of the 
standard deviations (of the variables and the rates of change) change by more than 10 
percent. The variation of correlation coefficients (Bravais-Pearson) caused by the 
anonymisation does not exceed 0.1. The same results hold for Spearman’s rank corre-
lation coefficient if we ignore the rates of change. Actually, variation is not higher 
than 0.05. But also for the rates of change only five percent of Spearman’s rank corre-
lation coefficients vary by more than 0.05 if we focus on the correlations between 
variables. For correlations between several periods of time, in only eight percent of 
the cases the limit of 0.05 is exceeded. 

In order to simulate data intrusion scenarios we generated as external data an ex-
cerpt of about 9,500 records of the so-called MARKUS database. Both, target and 
external survey, share the following key variables according to the years 1999 to 
2002: branch of economic activity at the 2-digit sector level (NACE 2), regional key 
(recoded to two categories eastern and western Germany), total turnover and total 
number of employees. Additionally, we introduced five employee size classes ’20-
49’, ‘50-99’, ‘100-249’, ‘250-499’ and ‘at least 500’. As a matching result, for each 
combination (NACE 2/region/employee size class) we observed disclosure risks far 
below 0.5, so that we decided to rate the target data to be de facto anonymously. Fi-
nally, we carried out single individual recherches regarding the three dominating 
enterprises of each sector. 

6   Outlook  

Already within the scope of the project on “Business Panel data and de facto ano-
nymisation”, some panel data sets were supplied. They are already used in some re-
search projects. The cost structure survey for the years 1995 to 2005, the monthly 
reports from 1995 to 2005, the survey of investments from 1995 to 2005 and the sur-
vey of small units for the years 1995 to 2002 in manufacturing as well as the data of 
the turnover tax statistics for 2001 to 2005 are available through remote data access 
and by using safe scientific workstations at the statistical offices. 

One result of the project is that de facto anonymisation of panel data can be 
achieved. First Scientific Use Files for data utilisation on one’s own workstation will 
presumably be made available at the beginning of 2009. The project should permit to 
automate the processing and anonymisation of other business statistics over time. This 
should make it easier and faster to release business panel data to the users. Also, the 
experience thus acquired will be used for further projects such as the integration of 
business data from various surveys and years. This is the subject of the new project 
“Integrated enterprise data for Germany” and will be the next step in the field of data 
production. Moreover, the central business register allows joining data from different 
sources and years. This produces complex data sets with a lot more business informa-
tion to analyse than ever before in Germany. Regarding access to those data there is a 
new challenge for the statistical offices concerning data confidentiality. It seems al-
most impossible to produce scientific use files for integrated business statistics over 
time because all the new information obtained has to be anonymised or in the worst 
case the information has to be taken out of the data set. That means in the end that on 
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the one hand the statistics will be enriched with information from different sources 
and on the other hand this information would have to be deleted afterwards caused by 
anonymisation. For this reason, it seems necessary to find next to scientific use files 
alternative ways to access also complex data sets. Those circumstances and the inter-
national development in this area show that there is no way around remote data  
access. With remote data access it is possible to work with the original data; the chal-
lenge is to keep the produced output safe to ensure confidentiality. This topic is part 
of the latest project in the Research Data Centre of the Federal Statistical Office in 
Germany “An informational infrastructure for E-Science Age”, which has already 
been requested. The goal of this project is to develop and automatise remote data 
access in Germany. One part deals with the production of so called data structure files 
(these are absolutely anonymised files possessing the same structure as the original 
data; they are sent to the researcher so that he or she can develop his or her analysis 
programs). The second part of the planned project deals with the development of 
procedures for automatic output checking. These are the first steps in the direction of 
real remote data access and the project shall provide the methodology to implement 
the concept in a technical solution. The project benefits from the work done in “Busi-
ness Panel data and de facto anonymisation” in several ways. Particularly anonymisa-
tion methods for panel data developed for the creation of scientific use files also can 
be used to construct data structure files. 
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Abstract. The score was introduced in 2001 in order to compare differ-
ent perturbative methods for statistical database protection. It measures
the trade-off between utility (information loss) and privacy (disclosure
risk of the released data). Since its introduction, the score has been
widely accepted and used in the statistical database community. In par-
ticular, some methods are sometimes prefered to others depending on
the obtained results in the original computation of the score.

In this paper we argue that some original aspects of the score
computation, specially those related to the disclosure risk, should be
revisited. Informally, the reason is that they do not consider the best pos-
sible situation for the intruder, and so they do not measure the real level
of privacy. We add some experimental results which support our claims.
More importantly, we propose some modifications which can/should lead
in the future to a more fair, realistic and useful computation of the score.

1 Introduction

There are many real situations where confidential data of people (respondents)
is published by statistical agencies, to be used by decision makers, politicians,
researchers, etc. The proliferation of such datasets in the Internet, for example,
is easy to check. This dissemination of confidential information should ensure,
however, that the privacy of the respondents is protected in some way, to be
in accordance with current laws and regulations. For example, a person would
not be happy if some published dataset contained a record with some attributes
which identify him univocally, concatenated with some confidential attributes
such as the income or the diseases he has suffered from.

One approach to achieve some level of privacy in this scenario is the applica-
tion of perturbative protection methods to the confidential data, before making
them public. A large number of such methods exist (see [1], [7] and [20] for three
good surveys on data protection methods). Besides protecting the privacy of
the respondents, the main goal is that the data protection method preserves as
much as possible the statistical utility of the original data. Of course, the values
of privacy and statistical utility are inversely related.
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A particular perturbative protection method is well-considered if it achieves
a good trade-off between privacy and statistical utility. There are different ways
to measure this trade-off. Maybe the most simple and intuitive one is the score,
which was presented in [5,6]. It just measures the average between two quantities:
one of them analyzes the information loss which is produced by the application
of the protection method, and the other one counts the risk that an intruder
may obtain any information that breaks the privacy of the data, after the pro-
tected dataset has been released. Since these two quantities are generic, meaning
that they can be computed independently of the considered protection method,
the score is a very good way to compare and classify different methods. This
is exactly what was done in [7]: a specific computation of the score was im-
plemented and applied to a large number of protection methods, with different
parameterizations, leading to a ranking where methods were classified according
to the obtained score. In this ranking, some of the first positions were occupied
by different parameterizations of two protection methods: microaggregation [4]
and rank swapping [2,14].

This ranking has been often considered as a criterion to choose one method or
another, when protecting a statistical dataset. Furthermore, after the publication
of this score ranking, subsequent works proposing new protection methods or
modifications to existing ones always consider the ranking in [7] as a benchmark
to compare the score of the new methods, in order to argue that they are (or
are not) good enough.

The goal of this paper is to show that some aspects of the original computation
of the score are debatable. These aspects are related to how one computes the
disclosure risk, in particular the risk of re-identification (or record linkage): an
intruder wants to link an original record with the corresponding protected record
in the released dataset. One of the debatable aspects is perhaps philosophical: the
original computation of the disclosure risk does not consider that an intruder
will always choose the best possible re-identification method, when trying to
re-identify a record and break therefore the privacy of the whole system. The
other main aspect that we want to discuss is the way to define the attributes
made available to an intruder for re-identification. The original definition, where
the intruder is assumed to know the i first attributes of some original record(s),
instead of i arbitrary attributes, can actually benefit the score of some particular
methods, e.g. microaggregation, as we show with some experiments.

In order to eliminate these problems, we propose some modifications to the
original algorithm for computing the disclosure risk of a data protection method.
In our opinion, these modifications will result in a more realistic, fair and useful
score. If our modifications are accepted by the statistical database community,
then the new score should be computed for all the methods and parameteriza-
tions that appear in the ranking of [7], to obtain a new ranking, which would be
more realistic and, for sure, different to the original one.

Organization of the paper. In Section 2 we explain the general framework of
statistical database protection that we consider in this work. We review mi-
croaggregation as an example of a protection method. We also give the general
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overview of the definition of the score. Then in Section 3 we explain in more
detail how the disclosure risk part of the score is usually computed. In Section 4
we discuss the two aspects of this computation that are not, in our opinion, com-
pletely correct. We propose some modifications to solve these problems. Section
5 shows some experiments on real data that support our arguments. Finally, we
conclude our work in Section 6.

2 Preliminaries

A dataset X can be viewed as a matrix with n rows (records) and V columns (at-
tributes), where each row contains V attributes of an individual. The attributes
in a dataset can be classified in two different categories, identifiers (Xid) or quasi-
identifiers, depending on their capability to identify unique individuals. Among
the quasi-identifier attributes, we distinguish between confidential (Xc) and non-
confidential (Xnc), depending on the kind of information that they contain.

We consider the following scenario for statistical disclosure control: (i) iden-
tifier attributes in X are either removed or encrypted, therefore we will write
X = Xnc||Xc; (ii) confidential quasi-identifier attributes Xc are not modified,
and so we have X ′

c = Xc; (iii) a protection method ρ is applied to non-confidential
quasi-identifier attributes, in order to preserve the privacy of the individuals
whose confidential data is being released. This leads to a protected dataset
X ′

nc = ρ(Xnc). This scenario, which was used first in [7], has also been adopted
in other works like [19].

2.1 An Example: Microaggregation

Microaggregation is one of the most popular, studied and used microdata protec-
tion methods. It builds small clusters of at least k elements of v attributes and
replaces the original records by the centroid of the cluster to which the records
belong.

The goal of a microaggregation method is to minimize the total Sum of Square
Error

SSE =
c∑

i=1

∑
xij∈Ci

(xij − x̄i)T (xij − x̄i),

where c is the total number of clusters, Ci is the i-th cluster and x̄i is the centroid
of Ci. The restriction is |Ci| ≥ k, for all i = 1, . . . , c.

If a microaggregation method is applied to all the V attributes of the original
dataset X at the same time; then, the resulting protected dataset X ′ satisfies the
property of k-anonymity: each protected record can correspond to at least k orig-
inal records. However, in order to increase the statistical utility of the released
(protected) information, statistical agencies usually split the whole dataset X in
blocks of a few attributes, and then apply a microaggregation method to each
block, independently. In this way, k-anonymity is not preserved any more [16].

In the case of univariate microaggregation (v = 1), there are polynomial
time algorithms to obtain the optimal microaggregation [11]. However, for the
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multivariate case (v > 1), the problem of finding the optimal microaggregation
is NP-hard. For this reason, multivariate microaggregation methods, like MDAV
[9,12], are heuristic.

2.2 The Score: Evaluating Risk and Utility

A microdata protection method must guarantee a certain level of privacy (low
disclosure risk). At the same time, since the goal is to allow third parties to
perform reliable statistical computations over the released (protected) data, the
protection method must ensure somehow that the protected data is statistically
close to the original data.

Therefore, we have two inversely related aspects to measure for each micro-
data protection method: the disclosure risk (DR), which is the risk that an
intruder obtains correct links between the protected and the original data; and
the information loss (IL) caused by the protection method. When one of them
increases, the other one decreases. The two extreme cases are the following ones:
(i) if the original microdata is released, then information loss is zero, but the
disclosure risk is maximal; (ii) if the original microdata is encrypted and then
released, the disclosure risk is zero (if we exclude the possibility that the pro-
tected attributes are strongly statistically related to other known unprotected
attributes), but the information loss is maximal.

There are different generic measures proposed in the literature to evaluate
the quality of a data protection method. As we have stated in the introduc-
tion, we will use the score, which was introduced in [6] and used in several
papers [15,21,22] to compare protection methods. The score is a simple and nat-
ural way to evaluate the trade-off between the information loss and the disclosure
risk because it is defined as the average of these two values. Namely,

score =
(IL + DR)

2
,

where IL denotes the information loss and DR denotes the disclosure risk. More
details on the computation of DR are provided in the next section. Regarding
IL, it is computed as IL = 100

(
0.2 IL1 + 0.2 IL2 + 0.2 IL3 + 0.2 IL4 + 0.2 IL5

)
,

where IL1 is the mean absolute error of the original microdata X with respect to
the protected data X ′, IL2 is the mean variation of the attribute average vectors,
IL3 is the mean variation of the attribute covariance matrices, IL4 is the mean
variation of the attribute variance vectors, and IL5 is the mean variation of the
attribute correlation matrices.

3 How Was DR Originally Computed?

To compute Disclosure Risk (DR), one considers two different approaches, the
first one being the interval disclosure risk, ID, which is the average percentage
of protected values falling into the intervals around their corresponding original
values. The second approach is record linkage risk (or re-identification risk),
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which considers the scenario where an intruder has obtained an original record
x ∈ X , possibly from a different external dataset Y , and tries to link it with
the corresponding protected record x′ ∈ X ′. If he succeeds, then he can match
the non-protected confidential information xnc with the identifiers xid that he
obtained from Y , and so he breaks the privacy of this individual. Two standard
record linkage methods are usually considered:

– Distance-based record linkage [17], where the original record is linked to the
closest protected record, using for example the Euclidean distance. The aver-
age percentage of correctly linked records using this method is the Distance
based Linkage Disclosure risk, DLD.

– Probabilistic record linkage [13], where the link is assigned in a probabilistic
way, according to some criterion on some coincidence vectors (defined from
the available sets of original and protected records). The average percentage
of correctly linked records using this method is the Probabilistic Linkage
Disclosure risk, PLD.

When computing disclosure risk for the score, half weight is given to record
linkage and half weight is given to interval disclosure. Then, the risk of record
linkage is defined as the average of the two methods. Formally, this corresponds
to DR = 0.25 · DLD + 0.25 · PLD + 0.5 · ID. The positive part of computing
DR in this way is that all the components are generic, in the sense that they
can be easily applied to a particular protection method or a particular data use.
For this reason, it is quite easy to implement this measure and to compare the
results (score) obtained by different data protection methods.

Since many data protection methods are probabilistic, one usually applies
them many times to a certain database. Then one executes the corresponding
methods for record linkage or interval disclosure, to obtain the disclosure risk,
and finally one computes the average values for all these executions.

Last, but not least, when the Linkage Disclosure Risk is computed, there are
many different possible situations, depending on the information (the amount of
attributes, in particular) on the original record(s) x ∈ X that is assumed to be
available to the adversary. The strategy employed in the originally implemented
computation of the score [7] was to consider as many different cases as attributes
in the database. In the t-th case, the intruder was assumed to know only one t
attributes of the original record(s), for t = 1, . . . , V . Finally, the average of the
linkage disclosure risks, for the V cases, was defined as the corresponding (prob-
abilistic, or distance based) linkage disclosure risk for that protection method
and that database.

4 Proposed Modifications for the Computation of DR

In this section we detect and discuss two debatable aspects of the original
computation of the disclosure risk DR. Some experimental examples which sup-
port our opinion will be given in the next section. Besides arguing why these
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aspects are partially wrong, we propose in this section a possible way to modify
them, which would lead to a new (and, in our opinion, better) definition of the
disclosure risk component of the score.

4.1 Considering the Best Record Linkage Technique

As we have seen in Section 3, the ‘record linkage part’ of DR is computed as
0.25 · DLD + 0.25 · PLD, i.e., as the average of the successful probabilities of
correct record linkage when using the distance-based method and when using
the probabilistic method. This seems a good and fair measure, for situations
where an intruder cannot know which of the two record linkage methods works
better. In this case, the best solution for him is to choose at random one of the
two methods, and apply it to the specific original record(s) to be linked (maybe
choosing one random method for each available original record).

But this approach is not realistic at all. In real life, intruders will know which
method has been used to protect a particular dataset. Furthermore, they can
artificially create their own databases to play with: they can protect them with
the method they want, and they can execute different record linkage techniques
for the resulting protected datasets and all the original records. As a result, they
will obtain, for each analyzed protection method, which record linkage technique
obtains the best re-identification results. If distance-based record linkage obtains
much better results than probabilistic record linkage for a specific dataset protec-
tion method ρ, then this intruder will always use distance-based record linkage
when trying to break the privacy of a dataset which has been protected using
ρ. In this case, 0.25 · DLD + 0.25 · PLD is obviously not a realistic measure
for the re-identification risk of ρ. Instead of this, one should consider 0.5 ·DLD
in this example. In general, one should replace 0.25 · DLD + 0.25 · PLD with
0.5 ·MAX(DLD, PLD), in the computation of DR.

This argument can (and should) go even further. We are assuming that an
intruder will try to correctly link original and protected records by using either
the probabilistic or the distance-based record linkage techniques. But maybe a
clever intruder is able to find other record linkage methods which work better
than those two methods, either in general or at least for some particular dataset
protection methods. An example of this fact has been shown in [15], where a
new record linkage technique is presented, specifically designed for rank swap-
ping, which finds a much larger number of correct links than the two generic
techniques. Some experimental results are provided in Section 5.2.

Summing up, one should try to find, for each particular dataset protection
method, which is the record linkage technique (either generic or specific) which
works better for this method. If we define as Linkage Disclosure Risk, LDR,
the average percentage of correctly linked records using this technique, then we
should compute the disclosure risk DR as DR = 0.5 · ID +0.5 ·LDR. Of course,
a drawback of this approach is that the value of the disclosure risk DR for a
particular protection method can (and should) vary through time, depending on
the progress in the area of record linkage: each time a new and better technique
is found for this method, its real disclosure risk increases. Being more formal,
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each record linkage technique which improves the previous ones for some method
gives a lower bound for the real value of LDR as well. For some methods, it is
possible to give theoretical upper bounds for the real LDR. For example, any
protection method which provides k-anonymity (such as microaggregation when
applied to all the V attributes of the original dataset) satisfies LDR ≤ 1/k.

4.2 Not All the Attributes Behave Equally

In the original implementation of the algorithm for computing the Linkage Dis-
closure risks, one considers V different scenarios, where V is the number of
attributes in the dataset. For each t = 1, . . . , V , the intruder is assumed to know
only t original attributes of some original record(s), that he has obtained from
external sources. His goal is to link these i attributes with the corresponding
protected record in the released dataset X ′. Once the percentages pt of correctly
linked records have been computed, for each of these scenarios t = 1, . . . , V ,
the final Linkage Disclosure risk is computed as the average of all of them,
(
∑V

t=1 pt)/V .
Again, this seems to be a good and fair approach, because in real life situ-

ations, different intruders can have access to different amounts of original in-
formation. The mistakes can appear when one studies the way in which the
t attributes available to the intruder are chosen. We can distinguish different
possibilities:

(a) The optimal solution would consider the semantics of each attribute, ana-
lyzing which attributes are more likely to be obtained from external sources,
and giving to these attributes more presence in the information held by the
intruder. But this approach would be very inefficient, and very specific to
each database.

(b) Another solution would consist in considering all the
(
V
t

)
possible combi-

nations of t attributes, computing the percentage of correct links for each
combination, and then computing pt either as the average/median of all of
them, or as their maximum (again thinking of the best possible situation for
the intruder). This algorithm, however, is quite inefficient if the number V
of attributes is quite large.

(c) Finally, a good enough approach seems to be choosing t attributes in a
complete random way, and defining pt as the percentage of correct links that
an intruder finds with this random combination of t available attributes.

The original computation of DR, in [7], was done by following the last ap-
proach (c). The problem is that the considered ‘random’ combination of t at-
tributes was always formed by the first t attributes of the database. This choice
was justified with the argument that this combination of t attributes behaves
as randomly as any other one. But this is not completely true, if we take into
account the protection method which has been applied to the original database.
This can be easily understood with a particular example: microaggregation.

Suppose a database X contains 9 attributes, and that X is protected by ap-
plying k-microaggregation twice: the first time for the first 5 attributes, and the
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second time for the last 4 attributes (actually, in the microaggregation methods
analyzed in [7], blocks were formed exactly in this way: a first block with the
first v1 attributes, a second block with the following v2 attributes, and so on). In
this case, if an intruder knows the first t attributes of some original record(s), for
t = 1, 2, 3, 4, 5, then he will be able to execute his record linkage techniques only
on the first block of 5 microaggregated attributes, because he does not have any
information about the last 4 attributes. In particular, the percentage of correct
links will be always pt ≤ 1/k. In a more realistic (or at least, average) case, the
intruder will know t random attributes of the original record(s), belonging to
the two blocks of aggregated attributes. Now, the intruder will be able to use
information of the two blocks of microaggregated attributes, which will lead to
a more successful percentage of correct links. For example, the bound pt ≤ 1/k
will not be valid any more.

Summing up, the specific way in which the selection of the t attributes avail-
able to the intruder was done in [7] can benefit some protection methods, for
example, microaggregation. We provide in Section 5 some experimental results
to exemplify this statement. To repair this small mistake, we suggest to use an-
other approach to select the t attributes of the original record(s) available to the
intruder. Namely, using a single but truly random combination of t attributes,
as in (c), or considering all the combinations of t attributes, and computing pt

as the maximum or average percentage of these combinations, as in (b). Some
examples of the values obtained with these approaches, for some instances of
microaggregation, are also given in next Section 5.3.

5 Experiments

In this section we explain some experiments that we have run on real data, and
which support the arguments that we have presented in the previous section.
Namely, we first show how the real score of a particular protection method, rank
swapping, varies when the linkage disclosure risk is computed by considering
only the best record linkage technique for this method. Then, we also explain
how the score of microaggregation can change when we consider different ways
to define the i attributes which are available to an intruder who tries to identify
original and protected records.

5.1 Data

The datasets used in this work, called Census, contains 1080 records consisting of
12 or 13 numerical attributes. Census was extracted using the Data Extraction
System of the U.S. Census Bureau [3]. A complete description about the details
of the construction of this dataset can be found in [8].

The data used to create this dataset was extracted from the file-group ’March
Questionnaire Supplement - Person Data Files’ of the data source ’Current Pop-
ulation Survey of the year 1995’. Not all the records of this survey were selected.
Records with zero or missing values for at least one of the attributes were dis-
carded to obtain the final 1080 records. The attributes selected to build the
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Table 1. Attributes (or variables) of the Census dataset

id Name Description

v1 AFNLWGT Final weight (2 implied decimal places)
v2 AGI Adjusted gross income
v3 EMCONTRB Employer contribution for health insurance
v4 ERNVAL Business or farm net earnings in 19
v5 FEDTAX Federal income tax liability
v6 FICA Social security retirement payroll deduction
v7 INTVAL Amount of interest income
v8 PEARNVAL Total person earnings
v9 POTHVAL Total other persons income
v10 PTOTVAL Total person income
v11 STATETAX State income tax liability
v12 TAXINC Taxable income amount
v13 WSALVAL Amount: Total wage & salary

Census dataset are described in Table 1. For the experiments with rank swap-
ping (Section 5.2), we will use the 13 attributes. For experiments with MDAV
(Section 5.3), we will use the 12 first attributes of the dataset.

5.2 Best Record Linkage for Rank Swapping

In this section we give a very illustrative example which supports the argument
that we have presented in Section 4.1: the real score should be computed by
taking into account the most effective record linkage technique.

The protection method of rank swapping, with parameter p and with respect
to an attribute attrj , can be defined as follows: first, the records of X are sorted in
increasing order of the values xij of the considered attribute attrj . For simplicity,
assume that the records are already sorted, that is xij ≤ x
j for all 1 ≤ i < � ≤ n.
Then, each value xij is swapped with another value x
j , randomly and uniformly
chosen in the set of still unswapped values, in the limited range i < � ≤ i + p.
Finally, the sorting step is undone. Usually, when rank swapping is applied to a
dataset, the algorithm explained above is run for each attribute to be protected
in a sequential way.

Table 2 shows the traditional score computation for different instances of rank
swapping applied to the whole Census database, with 13 attributes. DR Old is
defined as 0.5 ∗ ID + 0.25 ∗DLD + 0.25 ∗ PLD.

Table 2. Original Score calculation for rank swapping, with parameters p = 2, 8, 16

rs-p IL DLD PLD ID DR Old Score Old

rs-2 3.89 73.52 71.28 93.98 83.19 43.54
rs-8 16.54 32.13 11.74 62.11 42.02 29.28

rs-16 35.16 13.59 1.29 40.78 24.11 29.63
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Table 3. New Score calculation for rank swapping, with parameters p = 2, 8, 16

rs-p IL RSLD ID DR Max Score Max

rs-2 3.89 77.73 93.98 85.85 44.87
rs-8 16.54 41.28 62.11 51.69 34.12

rs-16 35.16 13.81 40.78 27.29 31.22

However, in [15], a new record linkage technique was introduced, specifically
designed for rank swapping. This technique always finds more correct links be-
tween original and protected records than the two generic (probabilistic and
distance-based) techniques. In other words, if we denote as RSLD (for Rank
Swapping Linkage Disclosure) risk the average percentage of correct links found
by this new technique, we have that RSLD is always greater than DLD and
PLD. For this reason, it is natural to think that an intruder trying to break
the privacy of a database that has been protected using rank swapping will al-
ways use this record linkage technique. Therefore, the real value of the score
should be computed by considering only RSLD. In other words, we will have
DR Max= 0.5 ∗ ID + 0.5 ∗ RSLD, in this case. Table 3 shows the values of
RSLD, DR Max and Score Max for the considered parameterizations of rank
swapping, applied to the Census dataset.

The result is a significant increase of the score values for rank swapping,
specially for those parameterizations (in particular, for p = 8) which obtained
best (i.e. lower) scores in the original computation. In general, we believe that
many positions of the original ranking of protection methods, obtained with the
first implementation of the score in [7], would be modified if our ideas were
used to compute a new version of the score, leading to a new and more realistic
ranking of dataset protection methods.

5.3 Different Combinations of i Attributes

In this section we compare and study the consequences of the different Score
calculations. Firstly, we have protected the Census dataset with different in-
stances of the MDAV microaggregation algorithm. In particular, we have split
the Census dataset in four blocks of three attributes: ((v1, v2, v3), (v4, v5, v6),
(v7, v8, v9), (v10, v11, v12)), then, we have applied the MDAV algorithm to each
block with k = 5, 15, 25.

In Table 4 we show the original Score values for the different MDAV in-
stances, note that the disclosure risk values (i.e. DLD and PLD) are computed
in the classical way. As we have said before, it is very inefficient to compute all(
V
t

)
possible combinations of attributes available for an intruder, for V = 12

and t = 1, . . . , 12. For this reason we also present in Table 5 the simplified
Score defined in [18], the unique difference of this simplified score with regard to
the classical one is that PLD is not computed, because the probabilistic record
linkage algorithm is very costly. Therefore, the disclosure risk is calculated as
DR = 0.5 ·DLD+0.5 ·ID. Using this simplified score we can efficiently compare
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Table 4. Original Score of different MDAV parameterizations

k IL DLD PLD ID DR Score

5 7.64 27.06 34.53 85.52 58.16 32.90
15 9.99 16.00 22.67 79.63 49.48 29.74
25 11.12 11.49 18.32 77.63 46.27 28.69

Table 5. Simplified original Score of different MDAV parameterizations

k IL DLD ID DR Score

5 7.64 27.06 85.52 56.29 31.97
15 9.99 16.00 79.63 47.82 28.90
25 11.12 11.49 77.63 44.56 27.84

different ways to compute the disclosure risk, assuming that the intruder knows
other combinations of attributes.

In Table 6 we show the disclosure risk values and the changes in the final Score
assuming that the intruder knows the best possible combination of attributes in
each pt calculation. As we can observe comparing the differences between the
DLD columns in tables 5 and 6, the DLD value is four times larger in the
new computation than in the traditional one. This increment is only produced
assuming that the set of attributes known by the intruder is the most favorable
for his interests.

Tables 7 and 8 show the DLD and Score values obtained by computing the
average and the median of all possible combinations of t attributes known by the
intruder. The final value of DLD is computed as the average of these values, for all
t = 1, . . . , 12. Again, in both cases the disclosure risk is larger than in the classical
Score calculation. Obviously, the differences are not so significant compared with
the maximum Score; however, such differences indicate that the traditional score
computation underestimates the real disclosure risk of microaggregation.

For simplicity of the experiments, we have considered again only DLD in this
case, because the distance-based algorithm for record linkage is very efficient,
and so we have been able to run it over all the

(
12
t

)
combinations of attributes,

for t = 1, . . . , 12. But in this particular case of MDAV, the best record linkage
technique is the probabilistic one, as shown in Table 4. Similar (but very more
costly) experiments could/should be run to compute the average or maximum
percentage of correct links found by using Probabilistic Record Linkage, for every
t = 1, . . . , 12. This would give, in this case, the real value of LDR.

Table 6. Simplified maximum score of different MDAV parameterization selecting the
largest disclosure risk variable selection

k IL DLD ID DR Score

5 7.64 70.24 85.52 77.88 42.76
15 9.99 51.63 79.63 65.63 37.81
25 11.12 41.83 77.63 59.73 35.42
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Table 7. Simplified score of different MDAV parameterizations selecting the average
disclosure risk variable selection

k IL DLD ID DR Score

5 7.64 34.00 85.52 59.76 33.70
15 9.99 20.30 79.63 49.96 29.98
25 11.12 14.79 77.63 46.21 28.66

Table 8. Simplified score of different MDAV parameterizations selecting the median
disclosure risk variable selection

k IL DLD ID DR Score

5 7.64 31.26 85.52 58.39 33.02
15 9.99 18.04 79.63 48.84 29.41
25 11.12 13.50 77.63 45.57 28.34

6 Conclusions

In this paper we have revisited the original implementation to compute the
score of dataset protection methods [7]. In particular, we have argued that some
details related to the way in which the ‘real’ Linkage Disclosure risk of a method
is computed deserve more discussion. We propose to modify some parts of the
original definition. The proposed modifications are very slight, but they can
lead to significant changes in the resulting scores of different methods. In our
opinion, the resulting ranking of protection methods will be more realistic and
fair.

Whereas one of our modifications (how to select the t attributes available
to the intruder, when re-identifying) closes this problem very quickly, the other
proposed modification (considering only the most effective record linkage tech-
nique) has more implications. For example, one should always consider the pos-
sibility that specific record linkage techniques are designed for each particular
protection method, leading to a more effective re-identification than the generic
(distance-based or probabilistic) techniques. For this reason, it is important to
find (or better, to discard the existence of) such specifically designed record link-
age techniques, before trying to conclude a more or less realistic value for the
Disclosure Risk of each dataset protection method.
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Abstract. An intruder seeks to match a microdata file to an external file using a 
record linkage technique. The identification risk is defined as the probability 
that a match is correct. The nature of this probability and its estimation is ex-
plored. Some connections are made to the literature on disclosure risk based on 
the notion of population uniqueness.  

Keywords: identification; log-linear model; match; misclassification; uniqueness.  

1   Introduction 

Statistical agencies are obliged to protect confidentiality when they release outputs. 
One potential threat to confidentiality is the use of record linkage methods [1, 2, 3]. 
The concern is that an ‘intruder’ might link an element of an agency’s output to a 
known individual (or other unit) in some external data source and, if the link is cor-
rect, succeed in identifying an individual who provided data upon which the output is 
based. Such identification (identity disclosure) might lead to the disclosure of further 
information about this individual.  

This threat is most natural to consider when the output consists of a microdata file. 
In this paper we suppose the agency releases a file containing records for a sample of 
units, with each record containing the values of various variables. These values may 
have been masked by statistical disclosure control (SDC) methods, although we sup-
pose there remains a one to one correspondence between the records and the units 
which provided the data. Thus, identification of these units could, in principle, occur 
via record linkage to an external file of known units. We suppose that linkage takes 
place by matching the values of a subset of the variables, ‘key variables’, shared be-
tween the microdata and the external file.   

The main aim of this paper is to consider approaches to measuring and estimating 
the risk of identity disclosure in this setting. A secondary aim is to link this work with 
other approaches in the literature to assessing identification risk which have centred 
on concerns about the existence of ‘population uniques’, i.e. records which are unique 
in the population with respect to their values of the key variables.   

Possibly the earliest contribution to assessing the identification risk arising from 
record linkage is by Spruill in [4]. She considers linkage methods which match by 
minimizing a distance measure and combines the definition of risk with the method 
for assessing it. The approach is based upon a re-identification experiment where each 
record in a microdata file, which has been masked by an SDC method, is matched to 
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the original unmasked file and the closest record in the latter file selected. The risk is 
defined essentially as the proportion of such matches which are correct.  She also 
notes that account might be taken of ‘near matches’. This broad approach has been 
adopted or discussed in much subsequent literature, e.g. [1, 5, 6, 7].      

There are, however, some problems with using the empirical proportion of correct 
matches as a measure of risk. First, the original unmasked file is acting as a surrogate 
for an external file held by the intruder in such approaches. The use of this file repre-
sents a highly conservative approach to risk assessment since it ignores the protective 
effect of sampling and, even if there are some common units in the microdata and 
external files, the values of the variables for these units in the two files are likely to 
differ for many practical reasons e.g. differences in measurement. To address this 
concern, the original unmasked file might be replaced by an alternative surrogate 
external file constructed by the agency. For example, it is reported in [8] that the US 
National Center for Education Statistics uses certain commercially available school 
files. Agencies may also consider using other datasets which they collect (from other 
surveys) or constructing synthetic files from the original unmasked file which take 
account of sampling and measurement error. 

A second more conceptual problem with this approach is that it can fail to reflect 
adequately the information available to the intruder. Suppose, for example, that the 
overall proportion of correct matches is 5% and that the agency considers this suffi-
ciently low. Suppose, however, that the intruder could determine which 5% of his 
claimed matches are correct and which 95% are incorrect. Then the intruder could 
claim some matches with 100% confidence and this might be deemed an unacceptable 
disclosure risk. On the other hand, suppose the agency chooses to calculate its propor-
tions separately according to different areas and observes that the proportions vary 
across areas from 0% to 70%. It might deem the release of data for those areas with 
proportions as high as 70% as unacceptable. However, if the intruder could only de-
termine that the overall rate of a correct match was 5% (in practice, the intruder will 
have difficulty determining the proportion of correct matches since it requires knowl-
edge of the true identities of the records in the microdata, information unavailable to 
the intruder) and was unable to identify areas where it was higher, the agency’s judg-
ment would be over-conservative.  

In this paper we suppose that it is necessary for the intruder to have evidence that 
the link is ‘likely’ to be correct. Identification risk is defined as the probability that a 
match is correct, conditional on data assumed available to the intruder, c.f. [9, 10], 
and it is required that this probability can be estimated reliably from these data. We 
suppose that the agency might use empirical proportions of correct matches as a 
means of validating these estimates but not as a direct means of estimation.    

We focus in this paper on probabilistic record linkage methods (based on the ap-
proach of  Fellegi and Sunter in [11] (hereafter referred to as FS) rather than methods 
based on distance measures. These probabilistic methods are most naturally adapted 
to assess the probability of a correct match. Indeed, part of conventional record link-
age methodology is the estimation of false match rates and one might, as a first ap-
proach, take one minus the estimated false match rate as a measure of identification 
risk. However, in conventional applications of record linkage, incorrect matches (false 
positives or false negatives) are only of interest because of their statistical conse-
quences for samples as a whole.  FS (p. 1196) state that ‘we are not concerned with 
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the probability of [these two kinds of erroneous matches]…but rather with the pro-
portion of occurrences of these two events in the long run’. In contrast, requirements 
to protect the confidentiality of every individual imply that an agency may be inter-
ested in the probability of a correct match for a single individual.  

The paper is organized as follows. First, a framework for the use of  record linkage 
for identification is set out in Section 2. Expressions for the probability of a correct 
match are obtained in Section 3. After briefly considering issues relating to key vari-
ables in Section 4, the estimation of the probability of a correct match is considered in 
Section 5. 

2   The Use of Record Linkage to Achieve Identification 

Consider a survey microdata file containing records for a sample of responding units 

1s  drawn from a finite population P . Each record will include variables needed by 

genuine users of the file, but is supposed not to include directly identifying variables 
like name and address. Suppose an intruder has access to this file and wishes to iden-
tify one or more units in 1s .  The intruder matches the file to an external file of records 

for another sample of units 2s P⊂ , for which the identities are known and for which 

it is feasible that the intersection 12 1 2s s s= ∩  is non-empty. (We assume that the 

definition of the population P  is public and that the intruder can thus remove any 
records in the external file which do not belong to P  – hence we do not need to allow 
for 1s  and 2s  to be drawn from different populations.)  

Suppose matching is based upon the values of variables, which appear in both files: 

the key variables [12].  Let  aX�  denote the value of the vector of key variables for 

unit a  in the microdata ( 1a s∈ ) and bX  the corresponding value for unit b  in the 

external database ( 2b s∈ ). The difference in notation between X�  and X allows for 

the possibility that the variables are recorded in a different way in the two data 
sources. This difference might arise from various reasons, including measurement 
error (in either source) or the application of a perturbative SDC method to the micro-
data file.  Following FS, suppose the intruder undertakes linkage by calculating a 

comparison vector ( , )a bX Xγ �  for pairs of units 1 2( , )a b s s∈ × , where the function 

(.,.)γ  takes values in some finite comparison space Γ . 

Example 1: Exact Matching on Categorical Key Variables  

Suppose X�  and X  take only K  possible values, denoted {1,..., }K  without loss of 

generality. Let {1, 2,..., 1}KΓ = +  and define the comparison vector by ( , )X X jγ =�  

if X X j= =� , 1, 2,...,j K= ,  ( , ) 1X X Kγ = +�  otherwise.  In this case, an intruder 

might consider any pair 1 2( , )a b s s∈ ×  for which ( , )a bX X Kγ ≤�  as a potential match, 

but rule out of consideration any pair for which ( , ) 1a bX X Kγ = +� . 
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Suppose the intruder seeks to use the comparison vectors to identify one or more 
pairs 1 2( , )a b s s∈ ×  which contain identical units, i.e. are of the form ( , )a a  where 

12a s∈ . Since the number of pairs in 1 2s s×  may be very large, the intruder may only 

consider pairs which fall in a set 1 2s s s⊂ ×� . Partition s�  into   

12{( , ) | , }M a b s a b a s= ∈ = ∈� , the pairs of common units, and 

1 2{( , ) | , , }U a b s a s b s a b= ∈ ∈ ∈ ≠� , the pairs of different units. The problem faced by 

the intruder is how to use comparison vector values to classify pairs from s�  into 
M or U . An optimum strategy is shown by FS to be based upon a comparison of the 
probability distributions of the comparison vector between M and U , i.e. a compari-
son of  

 

( ) Pr[ ( , ) | ( , ) ]a bm X X a b Mγ γ γ= = ∈�  ,         (1) 
 

  and ( ) Pr[ ( , ) | ( , ) ]a bu X X a b Uγ γ γ= = ∈�  , γ ∈ Γ .        (2) 
 

We discuss the nature of these probabilities in the next section. FS show that an op-
timal approach for the intruder is to order pairs in s�  according to the likelihood ratios 

( ) / ( )m uγ γ , treating pairs with higher values of this ratio as more likely to belong to 

M . Our aim is to explore the probability of a correct match for pairs selected in this 
way.  

3   The Probability of a Correct Match 

Given a pair ( , )a b , linked using its value of the comparison vector as described after 

(1) and (2), the probability that the pair represents a correct match, that is a b= ,  may 

be defined as  | Pr[( , ) | ( , )]M a bp a b M X Xγ γ= ∈ � , i.e. the conditional probability that 

the pair is in M  given that it is in s�  and that the comparison vector takes the value 
γ . To express |Mp γ  in terms of ( )m γ and ( )u γ , let: 

 

Pr[( , ) ]p a b M= ∈ ,      (3) 
 

be the probability that the pair is in M  given that it is in s�  and, using Bayes theo-
rem, we obtain 

 

| ( ) /[ ( ) ( )(1 )]Mp m p m p u pγ γ γ γ= + −   .                   (4) 
 

Sorting pairs according to this ‘posterior’ probability is equivalent to sorting ac-
cording to the likelihood ratio ( ) / ( )m uγ γ . From the SDC perspective, expression (4) 

may be interpreted as the identification risk for a pair ( , )a b , i.e. the probability that a  

and b  are identical, given the value of the comparison vector. From the record link-
age perspective, expression (4) is the probability of a correct match or alternatively 
one minus the probability of a false match [13].  

Expressions (1), (2) and (3) are, of course, dependent on the way the probabilities 
are defined. Our basic approach in this paper is to suppose that the probabilities are 
defined with respect to the following three processes: 
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(i) a random selection (with equal probability) of  the pair ( , )a b  from s M U= ∪� ; 

(ii) a random process of generating aX� ; 

(iii) a specified probability design for the selection of 1s  from P ; 

where the population P and the values aX  for units in the population are treated as 

fixed. Evaluating the probabilities over (i), holding 1s  and the aX�  fixed, we may 

write   
 

( ) [ / ]M Mm E n nγγ =  , ( ) [ / ]U Uu E n nγγ =  ,   (5) 
 

where Mn and Un  are the numbers of pairs in M  and U respectively, Mn γ  and Un γ  

are the corresponding numbers of these pairs for which the comparison vector takes 
the value γ  and the expectation is with respect to (ii) and (iii). We may thus interpret 

( )m γ  and ( )u γ  as the expected relative frequencies of the different comparison vec-

tors within  M  and U  respectively. Similarly, we may write  
 

( / )Mp E n n= � ,      (6) 
 

where n�  is the number of pairs in s�  and the expectation is with respect to (iii).  To 
explore the form of |Mp γ  further under (i), (ii) and (iii), consider two special cases. 

Example 1(continued) Exact matching  with no misclassification 

Suppose exact matching is used as defined earlier and that: a aX X=�  for all units 

a P∈  (i.e. no misclassification); 2s P=  and 1 2s s s= ×� .  Let 1 1| |n s=  and | |N P= . 

Noting that 1Mn n=  and 1n n N=� , we obtain from (5) and (6): 

1( ) [ / ]jm j E f n=  ,        
1

 ( -1)  
( )

( 1)
j jf F

u j E
n N

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 ,  1,...,j K=  

           1 1[ /( )] 1/p E n n N N= = ,         (7) 
 

where jf  and jF  are the numbers of units with  aX j=  in 1s  and P  respectively.  

Using Bayes theorem we obtain:   

Pr[( , ) | ( , ) ] 1/a b ja b M X X j Fγ∈ = =�    .             (8) 

This result if free of any assumptions about the sampling scheme. Expression (8) is 
familiar in the disclosure risk literature, e.g. [14]. It is common to argue, however, 
that agencies should design release strategies so that an intruder could not know the 
value of jF  from external information [10]. Note that, in particular, this requires 

assuming that 2s P≠ . Otherwise, the intruder could determine jF  from knowledge 

of aX  for a P∈ . If jF  is unknown to the intruder, the uncertainty about  jF  needs 

to be integrated out of the expression for the identification risk, subject to condition-
ing on the information available to the intruder. This integration is most naturally 
done by revising the probability mechanisms (i)-(iii) above to include a process which 
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generates the values aX  for units in the population. Under this extended probability 

mechanism, the identification risk becomes (1/ | )jE F data , where data represents the 

data available to the intruder.  We shall return to this issue in Section 5. First, we 

extend the result in (8) to the case when aX�  may be derived from aX  by a process of 

misclassification and 2s  may be any proper subset of P  .  
 

Example 1 (continued) Exact matching with misclassification 

Suppose again that exact matching is used and that 1 2s s s= ×� . We now allow 2s  to be 

any proper subset of P  and suppose that each aX�  is determined from aX  as follows  

Pr( | )a a jkX j X k θ= = =�  , for all a P∈  ,         (9) 

where jkθ  is an element of a misclassification matrix with columns which sum to 1. 

We now obtain 

12
12( ) [ / ]jm j E f n=  ,  

12
j

1 2 12

  
( ) j jf f f

u j E
n n n

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

�
,     1,...,j K=  

12 1 2[ /( )]p E n n n= , 

where 12
jf  is the number of units in 12s  with aX j=  and aX j=� ,  jf�  is the number 

of units in 1s  with aX j=�  and jf  is the number of units in 2s  with aX j=  . If we 

suppose that Bernoulli sampling is employed with inclusion probability π  we have 

12 2 1 /n n n N�  so that 1/p N�  and 1 2 12 12( 1)n n n N n− −� .  It follows that  
12

Pr[( , ) | ( , ) ] j
a b

j j

f
a b M X X j E

f f
γ

⎛ ⎞
∈ = ⎜ ⎟⎜ ⎟

⎝ ⎠
� � �  ,                       

where the expectation is with respect to both the sampling and the misclassification 

mechanisms. We have 12( )j jj jE f fπθ=  and ( )j jE f Fπ=� � ,  where jF�  is the number 

of units in P  with aX j=�  (imagining that the misclassification takes place before 

the sampling). Hence we may write 

Pr[( , ) | ( , ) ] jj
a b

j

a b M X X j
F

θ
γ∈ =� � �  .     (10) 

Note that this expression applies for any choice of 2s , which may be selected arbi-

trarily. The expression in (4) for the probability of a correct match and the special 
cases in (8) and (10) apply to a pair of records ( , )a b  with a specific agreement pat-

tern γ . This notion may be extended to apply to a class of pairs, M̂ , for which the 

likelihood ratio is above some threshold, say ˆ {( , ) | ( , ) }a b MM a b X Xγ= ∈ Γ� , where 

MΓ  is the set of agreement patterns γ  for which ( ) / ( )m uγ γ  is above a threshold 

specified by the intruder as determining which pairs to declare as links.   
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A key issue for identification risk assessment is how to estimate |Mp γ and, more 

specifically, how to estimate , ( )p m γ  and ( )u γ . We discuss this in section 5. Before 

then, we consider the record linkage approach further. 

4   Taking Account of Key Variable Structure 

In practice it is usual to base the comparison vector ( , )a bX Xγ �  upon the separate 

comparisons of C  key variables. Letting 1( ,..., )CX X X=� � �  and 1( ,..., )CX X X=  we 

write  
 

 1 1 1( , ) [ ( , ),..., ( , )]C C C
a b a b a bX X X X X Xγ γ γ=� � � ,       (11) 

 

where ( , )c c cX Xγ �  denotes the comparison vector for the cth  key variable.  
 

Example 2.  Comparison vectors for simple agreements between continuous or cate-
gorical key variables, c.f. [15] 

Let ( , ) 1c c cX Xγ =�  if c cX X� ∼  and ( , ) 0c c cX Xγ =� , otherwise, 1,2,...,c C= , where 

∼  is a specified agreement relation. Then  
1 2{( , ,..., ) | 0,1C cγ γ γ γΓ = = ; 1, 2,..., }c C= {0,1}C=  and | | 2CΓ = . 

 

Example 3. Comparison vectors for agreements between categorical key variables 

Suppose cX�  and cX  are categorical, taking values 1,2,...,c cj t= , and  

( , )c c c cX X jγ =�  if c c cX X j= =� , 1, 2,...,c cj t= , ( , ) 1c c c cX X tγ = +�  otherwise, 

1,2,...,c C= . Then 

1 2{( , ,..., ) | 1,..., 1, 1,2,..., }C c ct c Cγ γ γ γΓ = = + =  and 
1

| | ( 1)
C

c

c

t
=

Γ = +∏ . 

Given the large potential size of Γ  when C  is at all large, it is common to restrict 
attention to a subspace  *Γ  of Γ . A common approach is to partition the set of possi-
ble values of a specified subset of the key variables into blocks (e.g. [16]) so that the 
intruder only examines pairs for matching for which the values of these key variables 
fall in the same block. This constraint is typically equivalent to restricting attention to 
a subspace *Γ  of Γ . 

The estimation of ( )m γ  and ( )u γ  is challenging if  | |Γ  is large, as is likely in 

Examples 2 and 3 if C  is at all large. It is therefore common to make simplifying 
assumptions, in particular, following FS, to treat the C  agreement patterns in (11) as 
independent within  M  and U , i.e.  

 

1 2
1 2( ) ( ) ( )... ( )C

Cm m m mγ γ γ γ=  and 1 2
1 2( ) ( ) ( )... ( )C

Cu u u uγ γ γ γ=       (12) 
 

where  ( ) Pr[ ( , ) | ( , ) ]c c c c c
c a bm X X a b Mγ γ γ= = ∈�   and  

( ) Pr[ ( , ) | ( , ) ]c c c c c
c a bu X X a b Uγ γ γ= = ∈� , 1, 2,...,c C= . We refer to this assumption 

as independence of agreement patterns. In the categorical variable case of Example 3 
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with misclassification defined as in (9), a sufficient condition for the independence of 
agreement patterns is that misclassification operates independently, variable by vari-
able, and that the key variables are themselves independent.   

5   Estimation 

In this section we consider the estimation of the probability of a correct match, |Mp γ , 

defined in section 3. We assume that the estimator is a function only of data which is 
available to the intruder and thus rule out the possibility of using a training sample, 
c.f. [13]. In this case, one approach would be to use a mixture model, where , ( )p m γ  

and ( )u γ  are treated as unknown parameters in a model for the observed values of 

the comparison vectors. The model is a mixture of models for M  and U , treated  as 
latent classes, and maximum likelihood estimation is used for parameter estimation 
(e.g. FS Method 2; [15, 17]). This modelling approach has found some success in 
record linkage applications where very strong identifying information, such as name 
and address, is available. On the other hand, it has been less successful when the dis-
tributions of the comparison vectors for M  and U  are not well-separated or are not 
each unimodal [15, 18] and this may be the case in practice in many SDC contexts, 
e.g. for social survey data. This is a matter for further empirical investigation, how-
ever, which we do not attempt in this paper.  

Instead, we approach the estimation problem more directly by considering expres-
sions for |Mp γ in terms of our assumed probability mechanisms, as in section 3, and 

then considering how to estimate these expressions, from the data available to the 
intruder as well as possible additional external sources. This approach is analogous to 
Method 1 of FS. Since |Mp γ  is a function of , ( )p m γ  and ( )u γ , we also discuss the 

problem of estimating these parameters to gain a better understanding of the general 
estimation problem. We first return to the two examples in Section 3.  

 

Example : Exact matching with no misclassification 

We obtained | 1/M jp Fγ =   in expression (8) but argued, following this expression, 

that a more suitable measure will usually be (1/ | )jE F data . The evaluation of this 

conditional expectation is discussed in [19] under the assumption that the jF  are 

generated from a Poisson log-linear model and that the sample frequencies jf  repre-

sent the data. Treating the pairs ( , )j jf F  as independent, the conditional probability 

may then be expressed as (1/ | )j jE F f  and a closed form expression may be obtained 

under the Poisson log-linear model and a Bernoulli sampling assumption. The condi-
tional probability will be highest for cases which are unique in the sample, i.e. 1jf = . 

The conditional probability may be estimated by estimating the log-linear model  
parameters and plugging these estimates into the expression for the conditional  
probability.  
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Example 1: Exact matching  with misclassification 

We obtained the approximate expression | /M jj jp Fγ θ ��  in expression (10) . As above, 

we may argue that in practice jF�  will be unknown and a more suitable measure is 

(1/ | )jj j jE F fθ �� . The second component of this expression, (1/ | )j jE F f�� , may be 

estimated by applying the methodology of [19] to the observed microdata.  The mis-
classification probability jjθ  might be estimated by making some approximating 

assumptions and using external evidence on the misclassification process. One as-
sumption may be that some of the key variables are subject to no misclassification, as 
is commonly assumed for blocking variables, and that misclassification on the re-
maining variables is not dependent upon the values of such correctly classified vari-
ables. A further assumption may be that the remaining key variables are misclassified 
independently. This may be related to but is not the same as the earlier assumption of 
independence of agreement patterns. Under the independence of misclassification 
assumption,  jjθ  may be expressed as a product of correct classification probabilities 

for the different key variables.  This may need to be modified to allow for the possi-
bility that the values of some key variables are missing.  

To better understand the nature of the general estimation problem, now consider 
the separate estimation of , ( )p m γ  and ( )u γ . Consider p  first. If n�  is large we have 

from (6) that /Mp n n�� . The intruder knows the value of n�  and so needs to estimate 

Mn  in order to estimate p . We know 12Mn n≤ , where 12 12| |n s= . And if we take the 

worst case, where the intruder selects s�  in such a way that it includes all possible 
common pairs (i.e. all ( , )a a  where 12a s∈ ) then we have 12Mn n= . Thus, in order to 

estimate p , it suffices to estimate 12n . We suppose the intruder can determine inclu-

sion probabilities 1Pr( )i i sπ = ∈  for 2i s∈ . This is plausible. Often inclusion prob-

abilities are equal in social surveys or else they will vary by strata which may be 
known for units in 2s . Since we have 

2

12 ( )i
i s

n E π
∈

= ∑ , where the expectation is with 

respect to the sampling scheme for 1s , the  intruder can estimate 12n  by 

2

12ˆ i
i s

n π
∈

= ∑ and hence estimate p  by  12ˆ ˆ /p n n= � . Note also that some adjustment will 

usually be necessary for nonresponse (e.g. by multiplying iπ  by a response rate). 

Often in social surveys the inclusion probabilities iπ  will be small and so 12n̂  is only 

likely to be to have reasonable relative precision as an estimator if the size of the 
external database is large, representing a substantial proportion of the population.  
The extent to which p  may be estimated reliably also, of course, depends upon this 

condition.  
Let us now turn to the estimation of ( )m γ  and ( )u γ . Consider Example 1 with 

misclassification again, where we wish to estimate ( )m γ  and ( )u γ  for 1,...,j K= . 

We may write 12 12( ) [ / ]jj jm j E n nθ= , where 12 jn  is the number of units in 12s  with 

jγ = . And under Bernoulli (or equal probability) sampling we may write 
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12 12 2[ / ] /j jE n n f n= , so that 2( ) /jj jm j f nθ= . And to first approximation (Jaro, 1989) 

we have: 1 2( ) ( / )( / )j ju j f n f n�� . The right hand side of this expression provides an 

estimator of ( )u j  which should be reliable when jf�  and jf  are not small. However, 

in many disclosure problems of interest this will not be the case. In these circum-
stances, a modelling approach such as using log-linear models [19] or the independ-
ence of agreement patterns approach in section 4 seems needed.  Note that to  
estimate |Mp γ  in (4) we only need to estimate the ratio ( ) / ( )m j u j , which we may 

approximate in this case by 1( ) / ( ) /( / )jj jm j u j f nθ= � . The factor 2/jf n  cancels out 

and the key unknown required to estimate ( )m j  is jjθ . We suggest that it will nor-

mally not be realistic to expect that the intruder will be able to estimate this parameter 
reliably from the available data (although the mixture model approach merits further 
investigation). Thus, we suggest that a more realistic approach is that it is estimated 
by making some approximating assumptions and using external evidence on the  
misclassification process, as discussed above. 

6   Conclusion 

This risk of identification may be defined as the probability of a correct match for 
attacks where the intruder uses record linkage. It has been shown that expressions for 
this probability may be obtained for probabilistic record linkage in some special 
cases. In particular, expressions for the probability in the case of categorical key vari-
ables have close connections to those in other literature on disclosure risk, such as 
[10]. It has also been shown that an intruder may be able to estimate these probabili-
ties reliably under certain assumptions.  
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Abstract. The aim of this study is to evaluate the risk of re-identification
related to distance-based disclosure risk measures for numerical variables.
First, we overview different - already proposed - disclosure risk measures.
Unfortunately, all these measures do not account for outliers. We assume
that outliers must be protected more than observations near the center
of the data cloud. Therefore, we propose a weighting scheme for each ob-
servation based on the concept of robust Mahalanobis distances. We also
consider the peculiarities of different protection methods and adapt our
measures to be able to give realistic measures for each method. In order
to test our proposed distance based disclosure risk measures we run a sim-
ulation study with different amounts of data contamination. The results
of the simulation study shows the usefulness of the proposed measures and
gives deeper insights into how the risk of quantitative data can bemeasured
successfully. All the methods proposed and all the protection methods plus
measures used in this paper are implemented in R-package
sdcMicro which is freely available on the comprehensive R archive network
(http://cran.r-project.org).

Keyword: Statistical disclosure control, Distance based disclosure risk,
Outlier, Simulation study.

1 Introduction

For many applications the measurement of disclosure risk is based on the idea
of uniqueness, rareness, k-anonymity ([1]), base individual risk estimation ([2],
[3]) or on certain models ([4]).

However, if the data consists of continuous scaled variables (e.g. business data
on enterprises) other definitions of disclosure risk must be considered.

Applying the concept of uniqueness and k-anonymity on these quantitative
variables results that every observation in the data set is unique.

If detailed information about a value of a numerical variable is available,
one may be able to identify and eventually gain further information about an
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individual. So, an attacker may be able to identify statistical units by using for
example linking procedures. The anonymization of numerical variables should
avoid the successful merging of underlying data with other data sources.

We assume that an intruder has information about a statistical unit which
is included in the data and the intruder’s information about some values of
certain variables overlap with some variables in the data, i.e. we assume that
the intruder’s information can be merged with the data. In addition to that we
assume that the intruder is sure that the link to the data is correct, except for
microaggregated data. In this case the intruder can never be sure because at
least k observations have the same value for each numerical variable.

In the next part of the introduction we will give a short overview of some
popular distance based disclosure risk measures. In the next section we will
describe the need of a special treatment of outliers that exist in almost every
data set in Official Statistics. We then propose new measures of disclosure risk
which give more realistic results when applied to data which include outliers.
Finally, we compare all the measures considered in this study with a practical
real data example as well as within a large simulation study.

All our proposed measures have been included in R-package sdcMicro (see
e.g. in [5], [6]).

1.1 Distance Based Disclosure Risk Measures

By using distance based record linkage methods one tries to find the nearest
neighbours between observations from two data sets. [7] has shown that these
methods outperform probabilistic methods. Such probabilistic methods are often
based on the EM-algorithm which is highly influenced by outliers.

Another approach based on cluster analysis is provided by [8] who uses k-
means clustering with a high amount of clusters on mixed scaled variables. How-
ever, there are much better clustering methods available (see e.g. [9]). k-means
should not be applied on mixed scaled variables and, to put it crudely, this ap-
proach works as the usual distance based record linkage because it is based on
the idea of similar objects and distance metrics.

Another type of measures of disclosure risk - referred to as value disclosure
risk - is extensively used, e.g. by [10]. The main goal is to evaluate the gain in
explanation of parameters or variables when releasing perturbed data.

[11] uses distance based record linkage and interval disclosure. In the first
approach they search for the nearest neighbour from each observation of the
masked data value to the original data points. Then they sign those observations
for which the nearest neighbor is the corresponding original value. In their second
approach they check if the original value falls within an interval centered on
the masked value. Then they calculate the length of the intervals based on the
standard deviation of the variable (method SDID).

In addition to that they define a rank-based interval procedure which is similar
to the idea of rank swapping (method RID). For each variable of the masked data
set they define a rank-based interval around each value. The rank-based interval
includes p-percent of the total number of observations of the ranked variable.
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The proportion of the original values which fall into the calculated interval is
used as measure of disclosure risk.

The calculation of an interval is based on a vector k of length p, the dimension
of the confidential variables. k indicates how large these intervals for each variable
are. In the implementation of sdcMicro the elements of k are set to 0.01 by
default.

2 Special Treatment of Outliers for Disclosure Risk

Almost all data sets from Official Statistics consists of statistical units whose
values in at least one variable are quite different from the main part of the
observations. This leads to the fact that these variables are very asymmetric dis-
tributed. Such outliers might be enterprises with a very large value for turnover,
for example, or persons with extremely high income or even multivariate outliers.

Unfortunately, an intruder may have a big interest in the disclosure of a large
enterprise or of an enterprise which has specific characteristics. Since enterprises
are often sampled with certainty or have a sampling weight near to 1 the in-
truder can be very confident that the enterprise he wants to disclose is definitely
in the sample. In contrast to that an intruder may not be as interested to dis-
close statistical units which have the same behaviour than the main part of the
observations. For these reasons it is reasonable to define measures of disclosure
risk that take the “outlyingness” of an observation into account.

Therefore we assume that outliers should be much more perturbed than non-
outliers because they are easier to re-identify even when the distance from the
masked observation to its original observation is relatively large.

2.1 “Robustification” of SDID

In a first step we robustify method SDID because it is obvious that outliers
increase the intervals estimated with method SDID dramatically since the cal-
culation of the classical standard deviation is based on squared distances between
the observations and the arithmetic mean.

However, method SDID can be easily robustified by using a robust measure
for the standard deviation. We propose to use the MAD instead of the classical
standard deviation. The MAD is given by

MAD = 1.4826 ∗median(|xi − x̃|) ,

with x̃ being the median and the constant = 1.4826 ensures consistency. We will
call this robustified method RSDID.

3 New Measures of Disclosure Risk

All disclosure risk intervals obtained from methods SDID, RID, from the meth-
ods based on cluster analysis as well as RSDID do not depend on the scale of the
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actual value and therefore, the length of the interval is equal for non-outlying and
outlying values. Thus, we now propose new, more realistic measures of disclosure
risk which account for the “outlyingness” of each observation.

[11] searches for outliers (after z-transformation of the variables) by calculat-
ing Euclidean distances for each observation with respect to the origin. Finally
the observations are sorted based on these distances and the five% farthest ob-
servations are classified as outliers. Nevertheless, this approach is quite poor for
the detection of outliers because of using a non-robust transformation as well as
using Euclidean distances in a multivariate space.

The aim is now to measure the distance of each observation to the center
of the data in a multivariate space. For a p-dimensional multivariate sample
xi (i = 1, . . . , n) the Mahalanobis distance is defined as

MDi = (xi − t)T C−1(xi − t) for i = 1, . . . , n , (1)

where t is the estimated multivariate location and C the estimated covariance
matrix. Usually, t is the multivariate arithmetic mean, and C is the sample
covariance matrix.

Multivariate outliers may simply be defined as observations featuring large
(squared) Mahalanobis distances. However, this approach has several shortcom-
ings which are visualized in Figure 1. The concept of classical Mahalanobis dis-
tances fails completely in this example and does not describe the behaviour
neither of the outliers nor of the homogeneous part of the data well. Single ex-
treme observations as well as groups of observations that depart from the main
data structure can have a severe influence on this distance measure because both
location and covariance are usually estimated in a non-robust manner.
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Fig. 1. Illustration of the concept of Mahalanobis distances and robust Mahalanobis
distances on a simply 2-dimensional example. LEFT: Tolerance ellipse (95 %) and
“outlier detection” using Mahalanobis distances. RIGHT: Tollerance ellipse (95 %)
and outlier detection using robust Mahalanobis distances.
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The fastminimumcovariancedeterminant (MCD) estimator ([12]) iswellknown
in the literature and has been used to estimate the location and the covariance
structure in a robust way. Using this estimator in formula 1 leads to robust Ma-
halanobis distances (RMD). Figure 1 shows that Mahalanobis distances based on
classical measures are not suited for the definition of disclosure risk intervals and
that the robust version needs to be chosen. Observations whose RMDi is greater
than χ2

(0.975,p) may be defined as outliers. This is however only an approximation
since squared RMD are only approximately χ2 distributed (see e.g. in [13]).

The intervals for each data value should now depend on the robust distances,
i.e. the intervals may be defined as kj× (RMDi)1/2, j ∈ {1, . . . , p}. Following
this approach we obtain a disclosure risk for each observation by checking if
any value of an observation falls into the corresponding interval or not. We
then calculate the percentage of observations featuring high risk and call this
procedure RMDID1.

Since we want to consider the “outlyingness” of each observation we simply
weight each observation with its RMD or with (RMDi)1/2 · kj . In this paper we
use the latter weight and call this new procedure RMDID1w.

The need for an additional approach can simply be met by using a microag-
gregation procedure for the perturbation of microdata. We assume that we have
applied microaggregation with high aggregation level, e.g. 10. All the methods
described previously provide a high risk of disclosure if the original value and the
microaggregated value are close to each other. But these measures are unreal-
istic for this simple microaggregation example since 10 observations possess the
same value in the microaggregated variable, and data intruder can never be sure
which one is the correct link. Especially, if this observation is near the center of
the data cloud the previous measures fail to provide a meaningful measure of
disclosure risk.

These problems are solved by looking closely at observation that have a rel-
atively high risk of re-identification in RMDID1 or RMDID1w. An observation
which is marked as unsafe (with method RMDID1 or RMDID1w) is consid-
ered safe if m observations are very close to the masked observation (we call
this procedure RMDID2). This problem is illustrated in Figure 7 with a simple
2-dimensional example data set that is described below.

We now describe the proposed algorithm as follows:

1. Robust Mahalanobis distances are estimated in order to get a robust multi-
variate distance for each observation.

2. Intervals are estimated for each observation around every data point of the
original data points where the length of the intervals are defined/weighted
by squared robust Mahalanobis distances and the parameter kj . The higher
the RMD of an observation the larger the corresponding intervals.

3. Check if the corresponding masked values fall into the intervals around the
original values or not. If the value of the corresponding observation lies
within such an interval the entire observation is considered unsafe. We obtain
a vector indicating which observations are safe or not (→ we are finished
already when using method RMDID1).
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Fig. 2. Original observations and the corresponding masked observations (perturbed
by adding additive noise). In the bottom right graphic small additional regions are
plotted around the masked values for RMDID2 procedure.

4. For method RMDID1w we calculate the weighted (using RMD) vector of
disclosure risk.

5. For method RMDID2: whenever an observation is considered unsafe we check
if m other observations from the masked data are very close (defined by a
parameter k2 for the length of the intervals as for SDID or RSDID) to this
observation using Euclidean distances. If more than m points are within
these small intervals we conclude that the observation is “safe”.

For measures SDID and RSDID the parameter vector k is a multiplier of the
standard deviation. For methods RMDID1 and RMDID2 k is a multiplier of the
squared RMD. While for standardized data sets the standard deviation is one
and the interval around the masked value xmask

i has a length of 2 · ki the RMD
weights this interval according to (RMDi)1/2.

Naturally, most of the intervals corresponding to values in the center of the
data are down weighted, and only for those observations which are away of the
center of the data cloud the intervals increase.

The second parameter vector k2 for method RMDID2 which evaluates if the
masked data has any close neighbours can be set at, for example, 0.05 for each
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i ∈ 1, . . . , p. We look for (automatically) standardized data whose values are
within an interval of length 2 · k2i around xi(mask).

Figure 2 points out the idea of weighting the disclosure risk intervals. While
for method SDID and RSDID the rectangular regions around each value are
the same as for each observation our proposed methods take the RMD of each
observation into account. The difference between the bottom right and the bot-
tom left graphic is that for RMDID2 rectangular regions around each masked
variable are calculated as well. If an observation of the masked variable falls into
an interval around the original value it is checked if this observation does have
close neighbours, i.e. if the values of m other masked observations are inside a
second interval around this masked observation.

While it is not possible to interprete the weighted disclosure risk measures
RMDID1w and RMDID2 in a probabilisitic way. However, the proportion of un-
safe values on all observations using the unweighted measures can be interpreted
as a global, probabilistic measure of disclosure risk.

4 An Example Using the Tarragona Data Set

Please note, when applying the related functions in sdcMicro no data standardi-
sation needs to be done since both the center and the scatter of each variable are
already considered in our implementation. This means that the standardisation
is done automatically.
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The first result is obtained by using microaggregation method rmd from pack-
age sdcMicro. This algorithm is called RMDM (Robust Mahalanobis Distance
based Microaggregation) which was proposed by [5] and has excellent properties
(see e.g. the results of the simulation study in [14]). We are interested in how the
parameter vector k influences the results of the disclosure risk measures. In this
example which results in Figure 3 we set k as a vector as large as the dimension
of the Tarragona data set. k varied - with equal values - from 0.01 to 0.2.

One can see that all of the disclosure risk measures account for the increase of
the interval length. Naturally, measure RMDID2 is always zero because microag-
gregation of the data was conducted and a search for near neighbours was done.
Of course, if the parameter m is increased then this measure is quite similar to
RMDID1w.

5 Simulation Results

Based on the proposed measures the disclosure risk is evaluated in a simulation
study with 1000 simulations similar to the approach in [14]. We generate 1000
data sets of dimension 300 × 2 that are multivariate normal distributed with
mean vector µ = (0, 0) and covariance matrix Σ (σii = (1, 1), σij = (0.8, 0.8)).
Furthermore, we include a shifted outlier group with mean µout = c(10, 0) and
the same variance-covariance structure and calculate all risk measures discussed
above for any of the generated data sets.

Please note that we only show medians of the simulation results in order to
stay within the limit of pages.

Figure 4 shows the influence of outliers on the SDID disclosure risk measure
and the deviation of the eigenvalues from the robust estimated covariance matrix
between the original and the masked data. However, other measures can be used
too (see [15]). This measure of information loss was chosen because the eigen-
values of the covariance matrix may be used to represent the data structure and
are input of popular multivariate techniques like (robust) principal component
analysis. The robust estimation of the covariance matrix is done using the fast
MCD-estimator ([12]). A robust estimation may be prefered since traditional
measures may give unrealistic results on inhomogeneous data sets.

It is easy to see that the disclosure risk does not increase when using method
shuffling. [14] showed that this relates to the meaningless results of shuffling
when data feature outliers. Increasing the number of outliers in the data results
in high amount of information loss also for method additive noise addition and
ROMM (see the description of these methods in [16], [17] and [18]). Robust
shuffling ([14]) and especially mdav (see e.g. [19]) perform better and method
rmd ([20]) outperforms all the methods.

While the information loss for methods additive, shuffling and ROMM is
comparable in Figure 5, the disclosure risk for these methods is relatively low
compared to the shuffling procedure. But again, all these methods are strongly
influenced by outliers and provide worst results regarding information loss. Ro-
bust shuffling is again performing much better than shuffling if outliers are
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Fig. 4. Effects of shifted outliers (0 till 40 percent in 2.5 percent steps) on some pro-
tection methods based on SDID measure

included in the data. Again, rmd and mdav perform best. The “shift” from zero
outliers to 2.5 percent outliers that is visible for some methods can be explained
because the disclosure risk decreases when the perturbation goes down as soon
as outliers appear in the data.

In Figure (6) the SDID distance based disclosure risk measure is plotted versus
the RMDID2 measure. It is clearly visible that SDID fails and does not account
for outliers, i.e. does have the same length of disclosure risk intervals both for
non-outliers and outliers. The disclosure risk does not increase, for example,
for method shuffling since the data structure from the perturbed data is very
different from the original one because of the non-robustness of shuffling (see
also in [14]). In contrast to the other risk measures, RMDID2 considers the
observations as safe when using microaggregation and parameter m < g, with g
being the aggregation level.

We also want to find out if outlying observations do have a high risk of dis-
closure. Thus, we divided the data in outliers and non-outliers and visualize the
results for the outlier part for every single outlying observation.

Since we evaluate the disclosure risk which is weighted by the RMD for every
observation we can simply evaluate which observation possess a high risk of
re-identification. For the previous 2-dimensional example we can show which
observations are considered unsafe (see Figure 7). The left graphic of Figure 7
shows the unsafe observations discovered by method SDID. One can see that
some outliers are not considered unsafe although the masked observations is
relatively near to the original one. RMDID2 accounts for this and considers
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Fig. 7. Disclosure risk evaluated for every observation

some outliers as unsafe as can be seen on the right area of Figure 7. In addition
to that each observation does have a different risk. Therefore, one can easily
perform additional protection on these observations (e.g. adding noise) as long
as the newly proposed measure outlay a risk higher zero or higher a predefined
threshold.

6 Conclusion

When considering that data includes outliers (which is the case for virtually
any real life data set) we have to tackle two problems considering statistical
disclosure control for numerical variables. The first problem is that outliers may
disturb the protection methods (or make the generation of adequate synthetic
data impossible) with a high loss of information. This problem was partly con-
sidered in this study and a deeper insight into this problem was given by [14].
The second problem - the problem which is mainly discussed in this paper - is
that outliers must be protected more than the observations which are located
near the center of the data cloud, i.e. which are having low robust Mahalanobis
distances. We proposed new measures of disclosure risk called RMDID1, RM-
DID1w and RMDID2 that account for these problems and that assign a risk to
every observation weighted by the robust Mahalanobis distance of the observa-
tion (RMDID1w and RMDID2). In addition to that we described the problem of
microaggregation (but this is also related to all other methods) where an intruder
can never be sure which of the aggregated values correspond to the original ones.

The new measures of disclosure risk provide realistic estimations on the risk
of re-identification of each observation separately. Therefore, additional protec-
tion for high-risk observations may be provided to the masked data resulting in
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“protected” data with good quality with respect to both high data utility and
very low disclosure risk.

All the methods proposed in this paper are freely available on the web and
are included in R-package sdcMicro.
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Abstract. Handling very large volumes of confidential data is becoming
a common practice in many organizations such as statistical agencies.
This calls for the use of protection methods that have to be validated in
terms of the quality they provide. With the use of Record Linkage (RL)
it is possible to compute the disclosure risk, which gives a measure of the
quality of a data protection method. However, the RL methods proposed
in the literature are computationally costly, which poses difficulties when
frequent RL processes have to be executed on large data.

Here, we propose a distributed computing technique to improve the
performance of a RL process. We show that our technique not only im-
proves the computing time of a RL process significantly, but it is also
scalable in a distributed environment. Also, we show that distributed
computation can be complemented with SMP based parallelization in
each node increasing the final speedup.

Keywords: Record linkage, parallel computing, distributed computing,
disclosure risk evaluation.

1 Introduction

The need for data protection methods is larger every day, becoming crucial to
anonymize confidential information before releasing it in a private manner. This
is true in many situations where data becomes public or semi-public, and a
corrupt use of it may lead to the disclosure of such confidential information. A
situation where this may arise is when data is released by statistical agencies,
where there is a need to preserve the statistical properties of the information
while keeping it anonymous.
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However, when a protection method is applied, the evaluation of the privacy
provided by such method becomes a problem. Re-identification techniques, such
as Record Linkage (RL) methods [16,17,18], are the most common techniques
for evaluating the quality of a given protection method, i.e. the disclosure risk.
RL methods model the situation where an intruder sees the protected recordset
whereas he has access to records of the original recordset obtained from other
sources. The goal of the RL methods used by an intruder is to link the original
records with the corresponding records in the protected recordset. As a conse-
quence, the larger the number of records linked by means of these record linkage
methods, the larger the disclosure risk of the protection method.

Nowadays, there are two important aspects in the anonymization process.
First, the amount of data collected is larger every day due to the availabil-
ity of larger population databases. Second, the need for faster methods is also
more important because it is necessary to provide service to more frequent de-
mands. These two aspects call for the use of parallel applications during the RL
process.

In this paper, we propose a distributed strategy that focusses on speeding
up the RL processes for large data volumes. We propose this assuming that
the recordset fits in the memory of a single computer, deploying a strategy to
perform the most expensive part of the whole RL computation on a farm of slave
computers with independent memories. The simplicity of the method makes it
viable on a set of personal computers connected through a LAN, which makes
the whole system feasible for situations where there is a need for speed but the
resources for large parallel computers are not available.

Our results show that the use of parallel computing devices on large data
sets improves the performance of the RL methods leading the larger sets of data
on large numbers of processors to linear speedups of almost P for P processors.
The results also show that the overhead of performing a distributed execution
of the RL code does not grow with the number of processors, demonstrating the
scalability of the strategies proposed. Note also that, having multicore processors
make it possible to implement an SMP based parallelization in each node in order
to achieve a better performance.

The rest of the paper is organized as follows. We start setting up the problem
and describing a memoization technique in Section 2. We describe the technique
to distribute the computations in Section 3. We evaluate the parallelization in
Section 4. Finally, we explain the related work in Section 5 and conclude in
Section 6.

2 Record Linkage

Record Linkage aims at processing a set of recordsets in order to obtain sets of
records that belong to the same unique individual. We consider that RL is formed
by different phases as shown in Figure 1. First, the data sources are cleaned and
pre-processed normalizing attributes in the recordset files individually to allow
a simpler comparison with other data in the following steps [9].
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Fig. 1. Record Linkage processing model

Once the pre-processing is done, RL proceeds with the record comparison.
The objective of this phase is to obtain pairs of records that possibly belong to
the same individual. There are two kinds of RL algorithms for record compari-
son: those based on probabilistic methods and those based on distance functions
[16,17]. During the RL process, records are compared following a strategy that
may have several objectives, like reducing the number of comparisons as with
the Standard Blocking[2,7] or Sliding Window [10] (also known as Sorted Neigh-
borhood) methods, or finding the largest groups of similar records at the lowest
comparison cost as with Reduction using Anchor Record (RAR) [14].

In order to avoid possible errors induced by blocking methods, it is usual
to perform several passes using different sorting criteria, like the name or the
surname in the case that the entities are human beings.

Finally, it is necessary to analyze the record pairs so that groups of simi-
lar records are formed and false positives are discarded if possible, before the
eventual expert review process is done.

Record Comparison Process

The comparison phase is the most expensive in the RL process, with quadratic
complexity (O(N2)) in the number of records N , as opposed to the linear com-
plexity of the other phases. In this paper we will use the Sliding Window method
in order to reduce the record comparison phase complexity to (O(BN)), where
B is the size of the block used (window). However, it is still the most complex
phase in the whole RL process. Therefore, several additional techniques have
been proposed in order to further improve performance. Among these, the use
of memoization techniques for reducing the number of comparisons has been
proven as one of the most effective in terms of performance [6]. In this paper,
we assume this proposal as the baseline for our work.

After these considerations and before presenting our technique, we briefly de-
scribe the different phases of the Record Comparison process used in this paper.
The Record Comparison process is divided into four phases: Comparison Pre-
process, Caching, Detection and Merging. Following, we describe these phases.
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Comparison Preprocess. This phase aims at reducing the comparison cost
and making the use of memoization techniques simpler in order to reduce the
amount of computations involved in the comparison. We distinguish between two
steps in this phase. The first step is Labeling, as shown in Figure 2, where the
string values in the records are replaced with integer identifiers, and dictionaries
are created to match each string with its identifier. This allows to perform exact
comparisons between identical strings very efficiently, as well as, preparing the
data to make it possible to use memoization techniques with those strings that
are not equal.

Although the use of identifiers simplifies the exact comparison of attributes,
it is still necessary to compare the non-exact matching values. In our case, this is
done by using a two level String Comparison Function based on the Levenshtein
distance [15] applied to pairs of tokens coming from the compared string values.
Note that the objective of the following steps is to minimize the computational
cost of using such approximate comparison function.

As Figure 2 shows, for each comparison attribute A, a list SA is created at
loading time. SA = {p0, p1, · · · , pn−1} where n is the number of unique strings
in A. Each pi is a pair (vi, |vi|) where vi is a string value in A, and |vi| is its
number of occurrences in A. At the same time, each value v in A is replaced by
i (i.e. its position in the list is used as a string identifier), where pi = (vi, |vi|),
vi = v and |vi| is the number of occurrences of v in A. Note that the structures
on the right hand side of Figure 2 show the dictionaries, while the left hand side
part illustrates the data transformation from a string to an identifier.

The second step is Translating, also depicted in Figure 2. It consists in sort-
ing SA obtaining a new structure denoted by DA. DA has the same elements
than SA but they have been sorted by the number of times they appear in A.
Then, identifiers are reassigned, giving the smallest identifier to the most fre-
quent value. Note that because of the sorting process, it is necessary to translate
the identifiers of each value v of A to the new position occupied in DA.

Memory Allocation. In this phase, a cache for each comparison attribute A is
created. Note that, the caches are only created but not populated. These caches
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are used during the rest of the phases. The caching structures allow storing
the results of the comparisons, minimizing the number of actual comparison
computations. Usually, the number of unique values in A makes it unfeasible to
store the result for all the possible pairs of strings in memory, thus, only a subset
of the comparisons is stored. Given that, the cache size depends on the memory
available in the system, only m elements in A can be represented. Since DA is
sorted decreasingly by the number of occurrences, the comparisons between the
m most frequent strings in A are stored in the cache. Therefore, the comparison
between those frequent values are memoized avoiding unnecessary comparisons
during the process.

These caches are called Comparison Stores (CSs), and they are proposed and
described in detail in [6].

Detection. In this phase the comparisons between records are performed and
finally the similarities are detected. In order to find the maximum number of
similarities, several passes of a blocking method are performed. Each pass uses
a different criteria for sorting the recordset.

During this phase, the Comparison Stores are populated and used intensively.
When the comparison of a frequent pair of strings is performed, the result is
stored in the CS and it can be used later when the same strings have to be com-
pared. Thus, this result will never be computed again, minimizing the number
of comparisons for the frequent values.

Merging. This phase focusses on creating a similarity list removing duplicated
similarities that appear as a consequence of doing several passes in the Detection
phase. A similarity pair is only inserted in the list if it has not been inserted
previously. In order to achieve a good performance, a hash table is used for
controlling the similarities that have been already inserted in the list.

3 Record Comparison Process Parallelization

Now, we describe the parallelization of the Record Comparison process. We take
the Record Comparison schema presented in Section 2 as the baseline because
it is the most recent high performance RL strategy to our knowledge. How-
ever, the parallel technique we present in this paper can be used on any Record
Comparison Process.

In this paper, we parallelize the Record Comparison process. Given a set of
nodes, each one processes a portion of the recordset. Figure 3 shows the cluster-
based parallelization that follows a Master/Slave architecture. The Master node
is responsible for maintaining the whole input recordset and for sending the data
necessary to each Slave node for processing. In fact, this could have two different
implementations. First, assuming that all the nodes have all the data, thus, the
parallelization comes from the tasks on different data subsets engaged by the dif-
ferent nodes. Second, assuming that only the Master node stores the data, and the
Slaves receive the data subsets necessary at each precise moment. We opted for the
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Fig. 3. Parallelization of the Record Comparison Process

second option because it maximizes the amount of space for auxiliary data struc-
tures in the Slaves. Thus, by saving record space, we can create larger Comparison
Stores, which is significantly beneficial as shown in Section 4.

Assuming that the Master node is the unique node that keeps the whole
recordset, it is the only node that can perform the Record Comparison pre-
process, and create the DA lists. As the Slaves need the DA lists in order to
construct their own caches and for the Detection phase, the Master node has to
send them to the Slaves. Note that each Slave has its own independent caches
(i.e. the cached comparisons are not shared among Slaves) so the same com-
parison may be performed in each Slave, in contrast with the sequential version
where the same comparison is performed only once. This part of the preprocess
is sequential and it will become the most expensive part of the computations
when parallelism is applied, as we show later.

Once all the Slaves have their own DA structures and caches, they are ready to
perform the Detection phase. For each pass in the Detection phase, the Master
node has to sort the recordset by the current criteria. Once the recordset is
sorted, it is divided into a set of data blocks, in our case b = |recordset|

|Slaves| blocks.
The Master node sends each block to a different Slave, and if the Master plays
the Slave role, it keeps the last block. At that point, as explained in Section 2,
each Slave can start performing the Sliding Window strategy over its block. Once
a Slave has finished performing Sliding Window, it has to wait until the Master
node sends a new block to be processed. Note that, if the Master plays the Slave
role, it will have to finish applying the Sliding Window strategy over its own block
before sorting the recordset by the next criteria, dividing it into b blocks and
sending them to the Slaves. Therefore, the slower the Master node in performing
the Sliding Window, the longer the Slaves will be waiting idle, without working.
The convenience of using the Master as a Slave will be discussed in Section 4.

Each Slave at the Detection phase creates a list with the similarities it finds.
Because of the several passes that are performed during the Detection phase,
some similarities may be duplicated among the lists. Therefore it is necessary
that the Slaves send their own list to the Master node. The Master node will
merge them creating a similarity list where no duplicated similarities will appear.
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4 Experiments

With the objective of evaluating the proposed parallelization, we run a set of
experiments that shows the interaction between the size of the recordset with
the number of nodes to perform the RL process. To compare the results of our
parallelization we will use the Record Comparison process described above which
is the best possible sequential algorithm at hand.

The experiments use different numbers of records ranging from 1 million (1M)
to 8 million (8M) 128 byte records. The recordsets used in these experiments
have been generated using the synthetic record file generator included in the
FEBRL toolkit [11], with a 30 percent of duplicates and a maximum of 10
duplicates per record. However, in order to make the whole evaluation as realistic
as possible, the frequencies of the names and surnames used to generate the
synthetic recordsets with FEBRL have been obtained from the Catalan Statistics
Institute [5]. Recordsets are composed of records with eight attributes, out of
which four are strings: first name, first surname, second surname, as in the
Catalan person-naming system, and address.

In order to perform the experiments we have used a Beowulf [12] cluster with
the features described in Table 1.

Table 1. Cluster description

Beowulf cluster

Number of nodes: 16
Processor of each node: Intel Core 2 Duo 6600 @2.4Ghz
Memory of each node: 2GB
L2 Cache size of each node: 4096KB
Network: 1Gbps

Comparison of Parallel Strategies

With the objective to minimize the effort to parallelize, we first want to under-
stand the advantages of using the Master as a Slave or not. We will refer to the
version where the Master node acts as a Slave, as the Worker-Master version,
and the version where it does not, as the Lazy-Master version.

Figure 4 shows the Record Comparison process time in (a), and the cache
size of the Master and the Slaves in (b), when different amount of records are
considered in both versions. The number of nodes is fixed to 16. Note that, there
are 15 Slaves and 1 Master. Note also that, the cache size of the Slaves is equal
for both versions, and in the Lazy-Master version the Master node does not have
cache because it does not need it.

In Figure 4(a), we can observe that up to a recordset of 4 millions of records,
the results are almost the same in both versions. On the contrary, when the
recordset exceeds 4 millions, the Worker-Master version is slower. As explained in
Section 3 for the Worker-Master version, once the Slaves have finished performing
the Sliding Window strategy over their block, they have to wait until the Master
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Fig. 4. Execution time for Worker-Master vs. Lazy-Master (a) and Cache sizes for the
Master node compared to the Slaves nodes (b)

node finishes also with the Sliding Window over its own block. Afterwards, it
sorts the recordset, divides the recordset into new blocks and sends them to the
Slaves. In Section 2 the creation of the caches is described as a process that
uses the maximum available memory. Since the Master node is the node that
contains the input recordset, the larger the recordset size, the smaller the amount
of available memory in the Master node. Figure 4 (b) shows that as the number
of records grows, the Master cache size diminishes and the difference between
the Slaves and Master cache increases. Therefore, the Master node takes longer
in performing Sliding Window just because it has to do more comparisons, since
they do not fit into its cache and the Slaves have to be waiting more time for
the Master to finish.

This experiment supports the choice of using a single node, the Master, for
containing the input recordset. It also shows that for large recordsets the Lazy-
Master version is better. Since this paper is focused on the management of very
large volumes of data, from now on we will work with the Lazy-Master version.

Time Analysis

In this experiment, we want to analyze the Record Comparison process time.
This time is dissected as follows: the Detection time, which is the time spent in
the Detection phase; the overhead time, which is the time spent in sending the
different data over the network; and the Record Comparison preprocessing.

Figure 5 shows the dissection for the parallel version with 2, 4, 8 and 16
nodes. The input size has been fixed at 8 millions of records. Since we have
parallelized the Detection phase, its weight over the total time decreases quickly
while increasing the number of nodes, so this means that at some point, it is not
useful to increase the number of nodes due to Amdahl’s law 1. Note that thanks
to our technique, we have reduced the time to link 8 million records from 100 to
only about 18 minutes.

It is also interesting to observe the influence of the overhead over the total
execution time. The tests show that this overhead is negligible. Figure 6 presents
1 Amdahl’s law is used to find the maximum expected improvement to an overall

system when only part of the system is improved.
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the value of the overhead time for the parallel version with 2, 4, 8 and 16 nodes.
The input sizes are set at 1, 2, 4 and 8 million of records.

The most interesting observation of these results is the slow linear progression
followed for each input recordset. This means that the proposed parallelization
is very scalable in the number of nodes.

Speedup Analysis

In this experiment, we want to test the performance obtained with the paral-
lelization proposed in Section 3. We use as baseline for calculating the speedup
the sequential version of the Record Comparison process. The executions are
run using from 2 to 16 nodes with 1 to 8 million records. We will also see the
behavior when the 8M recordset is linked using an SMP parallelization with 2
threads.
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Fig. 7. Speedup for Detection phase (a) and Record Comparison process (b)

Figure 7(a) shows the speedup obtained in the Detection phase. We can ob-
serve that the speedup varies with the size of the input. Generally, the larger
the recordset, the better the speedup. Since the differences are clearer in the
case of using 16 nodes, we will focus on this scenario. These differences hap-
pen because in the sequential version, the larger the recordset, the smaller the
caches that fit in memory. On the contrary, in the parallel version, the cache
sizes of the Slaves are the same for any input recordset size, because the Slaves
are not storing the input recordset. This explains the large distance between
the speedup in the 1 million recordset case and the 8 million recordset case.
To understand the short distance between 2 million and 4 million recordsets we
have to take into account that, as explained in Section 3, since the cached values
are no shared among Slaves, more comparisons are performed. Depending on
the content of the recordset, the same comparison will be performed in more
or less nodes and the speedup will be affected. Although these variations, we
can observe that, in average, a significant speedup is obtained, and even better
than linear for 8M records. It is really interesting to observe that the speedup
for 8M-2threads doubles 8M using 1thread which proves that our distributed
technique is complementary with an SMP based parallelization in each node.
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We can observe the speedup obtained in the whole Record Comparison Process
in Figure 7(b). Note that the speedup obtained is not linear because, as we have
seen in the previous experiment, there is a constant time corresponding to the
addition of Record Comparison preprocessing and merging time. However, we
are able to perform the execution 8 times faster when we manage large recordsets
using just 1 thread and 11 times faster when we use 2 threads.

5 Related Work

Re-identification methods are a specific class of data base techniques. These
methods are designed to establish relationships among different entities or at-
tributes stored in different data sources. Obtaining the relationships among en-
tities or attributes makes sense in many scenarios such as: Schema matching [1],
Data integration [13],Data cleaning [3] and Object integration [8].

There are different classic approaches for the reduction of work during the
Record Linkage process, like the Standard Blocking [2,7] and the Sliding Window
[10] methods, that intend to reduce the number of record comparisons. On the
other hand, methods like RAR is aimed at reducing the number of attribute
comparisons [14].

Finally, it is possible to find another approach to reduce the execution time
of the RL process by using parallelism, as explained in [4], where it is necessary
to know the state of the recordsets processed, either if they are clean or dirty.
A good performance is achieved in [4] when the recordsets managed are clean.
However, it is unsuitable for very large recordsets, specially when they are dirty,
which is the common case. Note that in our approach we are not distinguishing
between dirty and clean recordsets. In fact we are always assuming dirty ones
since this is the worst case, assuming clean ones would mean do less comparisons
among records, and therefore obtaining better times.

6 Conclusions and Future Work

In this paper we have shown that applying distributed strategies to a Record
Linkage process is very useful and simple. This shows that organizations with
little computing resources may use the PCs in their desktops in a Beowulf con-
figuration to accelerate their RL processes in a cheap and efficient way.

Future work will include proposing more complex algorithms in order to
increase the speedup, focusing on the preprocessing also, as the problem to
tackle at this point. Another approach will be the analysis of clusters of non-
homogeneous computing devices, where instead of dividing the recordset into
blocks of equal size, it will be necessary to divide the recordset as a function of
the available memory of the nodes, which will help us to obtain a better speedup.
It will be also interesting to study the effect of sharing the cached comparisons
among the nodes to reduce the amount of comparisons.
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Another final approach will be to spread the input recordset out among the
nodes, in order to be able to manage an input recordset that does not fit into
the memory of a single node. This will imply also the use of parallel sorting
techniques in the Detection phase.
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Abstract. A global measure of the re-identification risk in microdata
files is analyzed. Two extensions of the log-linear models are presented.
The first methodology considers the weights in the analysis of contin-
gency tables. The results of several tests performed on real data are
presented. In the framework of statistical disclosure control, the second
methodology proposes a maximum penalized likelihood approach to the
computation of smooth estimates.
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1 Introduction

National statistical institutes (NSIs) often release microdata files from the
sample surveys. Such files represent an important source of information for re-
searchers. A major concern for the NSI releasing data on individuals is the need
to the protect confidentiality of respondents. Generally this is performed by
making assumptions on the tools an intruder might use in order to breach the
confidentiality of respondents.

Using an external register, e.g. a file containing information on the population,
a possible intruder might try to gather confidential information about (some)
individuals by comparing the variables shared by the released microdata file and
the external register. Assuming that the shared variables are categorical, in order
to identify a sample unit, the intruder would probably compare the combinations
of the shared variables. This scenario is often used by the NSIs when releasing
individual data stemming from social surveys.

The probability of establishing a correct link between a sample unit and a
population unit depends on the frequencies of the combinations of the shared
variables in the two files. Obviously, the units that are rare in the sample and
population have a greater risk of re-identification. However, the NSI might not
have easy and fast access to any external register. Consequently, the NSI gener-
ally estimates the risk of re-identification using only the information contained
in the sample. An important problem in statistical disclosure control (SDC) is
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the estimation of the number of sample uniques that are also population uniques.
This global risk measure might be used by the NSIs when deciding the release of
a file containing individual records. Individual risk measures are also important,
but they are generally used in order to apply statistical disclosure limitation
methods.

In this paper the estimation of a global risk measure is discussed. Two exten-
sions of the Poisson-log-linear model are presented. The notations and the general
framework are introduced in section 2. In section 3 the problem of the parameter
estimation of log-linear models with complex survey data is addressed. Possible
methods to deal with the contingency table structure are illustrated in section 4;
a penalized maximum likelihood function is proposed for the estimation of sample
uniques. Finally, some testing results are presented in section 5.

2 Notations

Consider a simple random sample of size n drawn from a population of size N and
denote by π = n/N the sampling fraction. Suppose that the re-identification risk
in a microdata file must be measured and imagine that the re-identification of
units could be performed using an external register by means of some common
variables, called key variables. The implicit assumptions of this scenario are
discussed, for example, in [8] and [14]. In this scenario the key variables are
categorical.

Denote by K the number of cells of the table defined by cross-classifying the
key variables X1, . . . , Xm. Let Fk be the number of population units belonging
to the k-th cell. Similarly, let fk be the number of sample units in the k-th cell.

As reported in [3], a global measure of the re-identification risk is given by
the number τ1 of sample uniques that are also population uniques:

τ1 =
K∑

k=1

I(Fk = 1, fk = 1)

When Fk, k = 1, . . . , K are independent variables following Poisson distributions
with means λk and the sample is selected by Poisson sampling with selection
probability π, an estimate of τ1 is given by:

τ̂1 =
K∑

k=1

exp(−µk(1− π)/π), µk = πλk (1)

In [13] the full derivation of the above formulas is given.
Generally, µ = (µ1, µ2, . . . , µK)

′
is estimated using a standard log-linear

model
log(µk) = x

′

kβ (2)

where x
′

k is the specified vector of main effects and interactions of X1, . . . , Xm.
If model (2) is in closed form, the iterative proportional fitting (IPF) algorithm
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might be used to estimate β and µ. Otherwise, the Newton-Raphson method
might be used to maximise the likelihood function, see [1].

The standard log-linear approach does not completely consider the data gen-
eration process. In the SDC framework, the characteristics of the complex survey
should be taken into account, too. Methods to deal with the survey weights and
relationships between variables are proposed in the next sections.

3 Survey Weights in Log-Linear Models

The surveys conducted by the NSIs often have a complex structure. From data
collection to data processing, each step has a significant impact on data analyses.

An important feature of the sampling surveys is that a weight is associated to
each sampled unit. The weights are supposed to account for the sampling and
non-response error. From a data analysis point of view, the weights are used to
estimate the population characteristics, see [7] for example.

Consider the table derived from the cross-classification of the key variables.
Using log-linear models, this contingency table is used to estimate the parameters
of the Poisson distributions underlying each cell count, see equation (2). Should
we use frequencies or weighted frequencies in the fitting step?

Three approaches to log-linear modeling for complex surveys are discussed:
use a) unweighted frequencies, b) weighted frequencies, and c) log-rate models.

Ignoring the weights is certainly the easiest choice. It might even provide good
results especially when the weights depend only on the independent variables in
model (2). In other words, unbiased estimates will be obtained if (some of)
the predictors of the log-linear model are the stratifying variables. However, it
should be stressed that both clustering and correlation between weights and the
dependent variable might induce biases.

Moreover, in the SDC framework, the model (2) is expressed in terms of key
variables. If a stratifying variable is not a key variable, it should not be included
in (2). In such situations, biased estimates could be obtained. In real surveys,
there might exist stratifying variables that are not key variables. This means
that in practical situations it is not always possible to include all the stratifying
variables in model (2). Some of this issues were discussed also in [11].

The second approach uses the pseudo maximum likelihood estimation method
described in [9]. First the weighted frequencies fw

k are calculated, fw
k =

∑
i∈Jk

wi,
where Jk denotes the k-th cell and wi is the weight of the i-th unit. Then the
contingency table is analyzed as if it were an unweighted table. In contrast with
the previous approach, the pseudo maximum likelihood estimation can deal with
sampling weights, stratification and clustering. The estimates will be unbiased.
However, the standard goodness-of-fit tests, like χ2 or Pearson, can no longer be
used because the assumption of independence of observations would be violated
when comparing the weighted frequencies fw

j with the estimated frequencies.
The third alternative, see [2], is to extend the log-linear models to include the

weights as an offset variable:

log(µk) = log(zk) + x
′

kβ (3)
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where zk = 1/wk is the inverse of the average cell weight wk = fw
k /fk.

It is easy to see that model (3) takes into account the population size, leading
to the log-rate model described in [6], a model for rates instead of counts.

Using this model, the estimates of the parameters would depend on the
weighted frequencies, while the standard errors will depend on the unweighted
frequencies. Both parameter estimation and goodness-of-fit tests will be correct.
Consequently, the log-rate model should be preferred to the other two choices
when the contingency tables derive from complex survey data.

There is a further advantage of the log-rate models. If model (3) is written as:

µk = zkexp(x
′

kβ),

by simply setting zk = 0, the structural zeros may be readily dealt with.
In section 5, the results of some experiments performed using the above models

are presented.
Of course, the log-linear model (3) is only a partial solution to the analysis of

complex surveys. In the statistical disclosure control framework further devel-
opments in the field of the analysis of contingency tables for finite populations
are required. For example, the sampling design features might provide useful
information for the estimation of τ1.

4 Smoothness in Log-Linear Models

As discussed in section 2, the contingency table to be analysed using log-linear
models derives from the key variables cross-classification. When these variables
have many categories, as it often happens in official statistics surveys, the con-
tingency table is sparse. The analysis of sparse tables could give two types of
problems. The first one is related to the goodness of fit tests since the χ2 statis-
tics do not preserve their asymptotic properties. Another problem is due to the
possible non-convergence of the algorithms like Newton-Raphson or IPF.

There are two well-known general solutions to the table sparseness problem:
table redesign and adding a constant. Collapsing cells and/or omitting variables
are compromise strategies, but these approaches could ignore potentially impor-
tant contributions. Moreover, in the SDC framework, recoding should be applied
only to reduce the risk of re-identification. The second solution is the addition
of a small number α, called flattening constant, to all or only to the empty cells.
Different choices of α have been proposed: 1, 0.5,

√
n/K, etc.. A review may be

found in [5]. One of the effects of adding a constant is that the sample size is
increased and the introduced total count might dominate the cell proportion
estimates.

Keeping models as simple as possible would attenuate the sparseness effects.
Anyway, it was observed in [10] that, when a simple independence model is used
in (2), the estimation of µk would be based on information from all the cells
having in common even a single characteristic with Jk.
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For the estimation of the re-identification risk, a local neighboring approach
to the analysis of contingency tables using the log-linear model (2) was presented
in [10]. The approach concerns ordinal key variables. The idea is that a sample
unique for which its neighboring cells have small values is more likely a popula-
tion unique than other sample uniques. More precisely, considering a similarity
distance d between the levels of the key variables, in [10] the maximisation of
the local likelihood function

LL(β)=
∑

k′∈Nk

[
fk′

[
β0+. . .+βt

(
d(k

′
, k)

)t
]
−exp

(
β0 + . . . + βt

(
d(k

′
, k)

)t
)]
(4)

is proposed, where Nk denotes the considered neighborhood of the k-th cell. In
[10] several choices of Nk and d are presented, taking into account their possible
multi-dimensionality.

With respect to the standard local polynomial regression framework, see [4],
the kernel function used in equation (4),

W0(u) =
{

1, u ∈ (−1, 1)
0, otherwise

is not a continuous function. This might cause problems to the asymptotic prop-
erties of the estimators. Indeed, W0 is not a proper smoothing function; it ensures
only a truncated local polynomial regression. Moreover, if the kernel W0 is used,
all the cells in Nk would equally contribute to a cell parameter estimation.

A second characteristic of LL is the number of parameters. Even if only the
estimated intercept β̂0 is used to compute µ̂k, the other estimates β̂1, β̂2, . . . , β̂t

should be computed, too. Unfortunately, the maximisation of (4) should be
performed for each cell, or, at least, for the sample unique cells. This means
that the overall number of parameters to estimate is proportional to the num-
ber of (sample unique) cells and to the polynomial degree t. The impact this
large number of estimations on data analyses and goodness of fit tests is not
clear.

Consider again the main idea of the proposal presented in [10]: “ if the neigh-
boring cells of a sample unique are small or empty, then it is more likely to have
arisen from a small population cell”. In the same spirit, the opposite statement
should also be true: if the cells in Nk have large values, the k-th cell should
not have a small value. In other words, neighboring cells should have values
similar in magnitude. That is, in the SDC framework, a smoothness should ex-
ist among the cells. This is equivalent to an independence assumption in each
reduced contingency table defined by the neighboring cells. The parameters of
the log-linear model (2) could be estimated by maximising a penalized likelihood
function. The penalty function could be derived from the smoothness constraints,
see [12].

For simplicity consider a 2-way contingency table with I rows and J columns.
Assume that the cross-classifyingvariables areordinal.DenotebyL(β) the relevant
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part of the log-likelihood function of (2), L =
∑K

k=1 [fklog(µk)− µk]. Then, the
maximum penalized estimator µ̂ is the value of µ = (µ1, . . . , µK)

′
that maximizes

PL(β) = L(β)−A

I−1∑
i=1

J−1∑
j=1

[
log

(
µi,jµi+1,j+1

µi,j+1µi+1,j

)]2

(5)

The function PL penalizes for missed independence in the reduced 2x2 tables
since PL takes smaller values when the cross-ratios are much greater (smaller)
than 1. It is known that the greater the departure of the cross-ratio from 1 is,
the greater the departure from independence is. The generalisation of (5) to
multi-dimensional tables is straightforward.

A first advantage of the penalized maximum likelihood approach is that for
certain choices of A, the existence, uniqueness and consistency of the estimates
are proved in [12]. Indications on practical choices of A are also given. Moreover,
goodness of fit tests could also be constructed.

Second, the number of parameters to estimate is greatly reduced. The third
advantage of the penalized likelihood approach is that the penalty function could
be extended to non-ordinal categorical key variables. Indeed, the independence in
the reduced tables can be modeled for nominal variables. However, the properties
of the resulting estimators should be derived. Finally, the penalized likelihood
function PL could be readily used together with the log-rate models discussed
in the previous section.

5 Experiments

Several preliminary experiments were performed using the Italian census data.
The selected variables were: Province, Gender, Age, Marital status and Educa-
tion. For each chosen province, a stratified sample was selected from the census
data by means of a simple random sampling. The stratification variables were
Gender and Age (14 categories). The weights were computed in order to preserve
the population totals in each strata. For each province, three different sampling
fractions were used. Moreover, the data of the Italian Labour Force Survey (LFS
2001) was also used. For this sample, a two-stage stratified sampling scheme was
used. The stratification was derived at Province level using also the dimensions
of municipalities. For each sampling strata the weights were computed in or-
der to preserve known population total by Gender and Age (14 classes). In the
experiments reported here the household hierarchy was ignored.

Province, Age (14 categories), Gender, Marital status (6 categories) and Ed-
ucation (6 categories) were considered as key variables in a first testing step.
Then, in a second testing step, only Age was no more considered as key variable.
This might not be a realistic assumption in practical situations. This test was
performed in order to assess the behaviour of the proposed estimators when the
key variables are not stratifying variables.

The three versions of the log-linear models (unweighted frequencies, weighted
frequencies and log-rate models) were applied. The estimations of the number
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Table 1. τ1 estimation when Age is a key variable. SaUn = number of sample uniques,
NoW = unweighted model, LR = log-rate model, I = independence model, S = satu-
rated model.

Province π SaUn True NoW(I) LR (I) NoW(S) LR(S)

Asti 0.015 246 6 0.22 17.31 0.70 23.04
Asti 0.150 316 41 0.58 12.42 4.02 30.43
Asti 0.277 307 73 0.73 7.84 5.30 32.46
Asti LFS 0.005 86 4 0.00 12.71 0.00 18.38

Biella 0.017 215 3 0.18 9.45 1.09 19.11
Biella 0.167 291 38 0.80 10.73 5.22 29.79
Biella 0.308 279 73 1.20 7.33 6.64 24.95
Biella LFS 0.005 127 7 0.00 13.02 0.03 21.27

Cuneo 0.006 201 2 0.00 7.87 0.06 12.23
Cuneo 0.056 288 14 0.00 11.07 0.09 18.93
Cuneo 0.105 270 23 0.01 7.08 0.38 19.17
Cuneo LFS 0.003 108 10 0.00 17.47 0.00 23.66

Ferrara 0.009 204 2 0.01 8.38 0.21 15.27
Ferrara 0.090 259 23 0.02 8.65 1.98 23.66
Ferrara 0.166 259 34 0.04 6.08 2.13 21.35
Ferrara LFS 0.003 122 4 0.00 22.24 0.36 26.08

Frosinone 0.006 217 1 0.00 9.97 0.04 15.15
Frosinone 0.064 301 23 0.01 14.13 0.50 22.79
Frosinone 0.119 275 32 0.01 4.31 1.09 19.54
Frosinone LFS 0.003 82 6 0.00 12.35 0.11 15.35

Latina 0.006 241 4 0.00 6.43 0.02 10.51
Latina 0.064 278 11 0.00 11.18 0.26 20.99
Latina 0.118 307 34 0.00 6.29 1.73 19.24
Latina LFS 0.003 103 7 0.00 12.69 0.04 18.38

Novara 0.009 214 1 0.00 10.71 0.09 15.81
Novara 0.091 308 30 0.02 4.85 0.87 24.24
Novara 0.168 290 44 0.02 4.57 1.10 22.67
Novara LFS 0.003 112 8 0.00 14.20 0.35 20.95

Parma 0.008 222 3 0.00 11.09 0.10 18.13
Parma 0.079 273 19 0.00 5.38 1.81 18.22
Parma 0.146 270 34 0.01 5.00 2.20 17.01
Parma LFS 0.003 113 6 0.00 17.51 0.04 21.51

Ravenna 0.009 237 4 0.01 13.84 0.30 20.48
Ravenna 0.089 292 17 0.01 9.14 1.44 24.03
Ravenna 0.165 306 43 0.04 4.13 2.02 19.56
Ravenna LFS 0.003 116 7 0.00 18.36 0.02 28.12

Rieti 0.021 195 7 0.35 10.64 1.07 20.74
Rieti 0.211 288 71 1.47 12.88 6.54 38.65
Rieti 0.391 301 116 2.98 10.19 16.32 45.92
Rieti LFS 0.007 82 2 0.02 7.46 0.51 13.23

Rimini 0.011 225 1 0.02 12.58 0.45 16.91
Rimini 0.114 299 30 0.05 8.78 2.09 33.62
Rimini 0.212 283 58 0.12 5.34 4.20 29.14
Rimini LFS 0.004 86 3 0.00 11.66 0.00 16.38

Verbano 0.020 193 1 0.29 8.08 0.72 16.96
Verbano 0.195 289 50 0.74 16.24 6.11 44.19
Verbano 0.362 296 113 2.21 8.57 9.11 34.65
Verbano LFS 0.006 107 8 0.00 22.42 0.41 26.60

Vercelli 0.018 225 9 0.28 8.58 1.43 14.80
Vercelli 0.176 279 60 0.89 10.13 6.34 30.93
Vercelli 0.327 283 80 1.04 7.19 7.10 28.52
Vercelli LFS 0.005 111 3 0.00 18.95 0.15 23.14

Viterbo 0.006 203 4 0.02 10.51 0.05 11.76
Viterbo 0.064 305 11 0.26 20.99 0.14 8.21
Viterbo 0.118 315 34 1.73 19.24 0.21 6.34
Viterbo LFS 0.003 91 7 0.04 18.38 0.00 14.41
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Table 2. τ1 estimation when Age is not a key variable. SaUn = number of sample
uniques, NoW = unweighted model, LR = log-rate model, I = independence model, S
= saturated model.

Province π SaUn True NoW(I) LR (I) NoW(S) LR(S)

Asti 0.015 15 0 0.00 0.10 0.00 0.20
Asti 0.150 24 1 0.00 0.00 0.00 0.09
Asti 0.277 11 0 0.00 0.00 0.00 0.00
Asti LFS 0.005 13 1 0.00 3.73 0.00 3.08

Biella 0.017 27 0 0.00 3.01 0.00 2.24
Biella 0.166 14 1 0.00 0.00 0.00 0.01
Biella 0.309 17 3 0.00 0.00 0.00 0.00
Biella LFS 0.005 9 1 0.00 1.96 0.00 2.38

Ferrara 0.009 29 0 0.00 1.89 0.00 1.45
Ferrara 0.089 16 0 0.00 0.00 0.00 0.00
Ferrara 0.166 13 1 0.00 0.00 0.00 0.00
Ferrara LFS 0.003 13 0 0.00 5.68 0.00 5.41

Latina 0.006 28 0 0.00 1.62 0.00 2.24
Latina 0.064 25 0 0.00 0.00 0.00 0.36
Latina 0.118 12 0 0.00 0.00 0.00 0.00
Latina LFS 0.003 15 0 0.00 2.95 0.00 2.94

Vercelli 0.018 29 0 0.00 3.04 0.00 2.64
Vercelli 0.176 18 0 0.00 0.00 0.00 0.01
Vercelli 0.327 17 1 0.00 0.00 0.00 0.00
Vercelli LFS 0.005 12 2 0.00 2.55 0.00 2.31

Table 3. Initial contingency table

5 4 3 3 5 1 2 5
1 2 3 3 6 4 2 5
5 4 8 4 4 4 11 4
15 8 8 6 5 6 4 3
10 1 11 2 4 4 3 9
8 7 9 3 2 1 2 1
8 2 4 5 7 2 1 1
6 4 3 7 1 1 2 1

of sample uniques that are also population uniques were compared to the true
values calculated from the census data. The estimated numbers of sample and
population uniques obtained are presented in tables 1 and 2, together with the
true values of τ1. In both tables, only a selection of tested provinces is shown;
similar results were obtained in all the other cases. The results of the weighted
log-linear model are not shown since they were almost always equal to zero.
This might be due to the inflation effect induced by the weights. From tables
1 and 2, it may be observed that better results may be obtained using log-rate
models. For the smaller sampling fractions, there is an overestimation tendency,
while for greater sampling fractions the log-rate model underestimates. It should
be noted that when a stratifying variable is not a key variable, the estimates
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Table 4. Results of the maximum likelihood estimation approach

6.5 5.9 5.3 4.8 4.3 3.9 3.5 3.2
6.4 5.8 5.2 4.7 4.3 3.9 3.5 3.1
6.4 5.7 5.2 4.7 4.2 3.8 3.4 3.1
6.3 5.6 5.1 4.6 4.1 3.7 3.4 3.0
6.2 5.6 5.0 4.5 4.1 3.7 3.3 3.0
6.1 5.5 4.9 4.5 4.0 3.6 3.3 3.0
6.0 5.4 4.9 4.4 4.0 3.6 3.2 2.9
5.9 5.3 4.8 4.3 3.9 3.5 3.2 2.9

Table 5. Results of the penalized maximum likelihood estimation approach

5.0 4.0 3.1 3.2 5.0 2.1 1.6 5.0
1.8 1.8 3.1 3.2 6.0 3.9 2.9 4.7
4.9 4.6 8.0 4.4 4.4 4.1 11.1 4.0
15.1 8.2 8.0 6.0 5.0 6.0 4.0 3.4
10.1 3.2 5.6 2.2 4.5 4.0 3.2 8.2
8.4 5.8 10.1 3.2 2.3 1.7 1.7 1.3
8.1 2.2 4.4 5.0 6.8 1.7 1.7 1.2
6.0 4.1 3.2 7.0 1.2 1.3 2.2 1.6

obtained using the unweighted log-linear model are always equal to zero. More
testing and simulations will be performed in order to assess the properties of the
log-rate models in the SDC framework.

The penalized maximum likelihood approach is illustrated by means of a sim-
ple numerical example. Table 3 presents an 8 x 8 contingency table derived from
2 ordinal variables; the cells (5, 2) and (7, 7) have both a value equal to 1. The
neighbors of the cell (5, 2) have large values; instead, the neighbors of the cell
(7, 7) have small values.

Table 4 shows the results obtained by fitting an independence model using the
maximum likelihood approach. The table 5 shows the results of fitting the table
3 by maximizing the penalized likelihood function (5). The parameter A was
determined by means of the expectation-maximisation algorithm described in
[12]. When smoothness is assumed, tables 4 and 5 indicate that the maximisation
of a penalized likelihood function might be a valid methodology for the analysis
of contingency tables.

6 Conclusion

Two problems related to the estimation of a global risk measure were addressed.
First the analysis of contingency tables derived from complex surveys was dis-
cussed. A log-rate model using the weights as an offset variable was presented.
Unbiasness and validity of goodness of fit tests are two significant characteristics
of these models. Promising results are obtained when real data were fitted using
this modeling procedure.
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In the statistical disclosure control framework, table smoothness is an im-
portant issue since the estimation of any risk of re-identification measure might
be performed by borrowing information from the neighboring cells. Moreover,
the relationships between the cross-classifying variables might determine the
number of sample uniques that are also population uniques. A penalized like-
lihood approach was proposed to deal with smoothness. The penalty function
was expressed in terms of independence constraints. Starting from the presented
preliminary results, further experiments will be performed.
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Abstract. In the release of microdata files, reidentification of a record
implies disclosure of the values of a possibly large set of sensitive vari-
ables. When microdata files are released by statistical Agencies, a careful
assessment of the associated disclosure risk is therefore required.

In order for an informed decision to be made, maximising accuracy
and precision of the risk estimators is crucial. Clearly such characteristics
will affect the risk assessment process and Agencies should choose the
estimator that performs best. In fact, estimators may perform poorly,
especially for those records whose real risk is higher. To improve esti-
mation, we propose to introduce external information, arising from a
previous census as is done in the context of small area estimation (see
[10]). In [4] we considered SPREE - type estimators that use the associ-
ation structure observed at a previous census (see [9]); in this paper we
consider models that use the structure of a population contingency table
while allowing for smooth variation of the latter. To assess the statistical
properties of this estimator and compare it with alternative approaches,
we show results of a simulation study that is based on a complex sam-
pling scheme, typical of most households surveys in Italy. Comparison
is made with a simple SPREE estimator and a Skinner-type estimator
[13,6], applied to a complex sampling scheme.

Keywords: Disclosure, generalized linear model, per record risk,
SPREE, simulation study.

1 Introduction

In the release of both microdata files and tables, a major concern in disclosure
limitation is to avoid record reidentification. Even if data arise from a sample sur-
vey, it is always possible that an intruder, using information from other sources
and the published data, might link one or more of the released records to one

J. Domingo-Ferrer and Y. Saygın (Eds.): PSD 2008, LNCS 5262, pp. 213–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



214 L. Di Consiglio and S. Polettini

or more units in the population. Note that reidentifying a record in microdata
implies disclosing the values of a possibly large set of sensitive variables.

For microdata, the disclosure scenario allows for the existence of external in-
formation that permits record reidentification. This information usually consists
of publicly available variables (called key or identifying variables) known for the
population and also present in the file to be released. The reidentification risk
is defined as the probability that a correct link between a specific record in the
population and a record in the sample is established. Under this definition risk
measures depend on frequency of cells in the contingency table built by cross
tabulating the key variables. The problem of estimating disclosure risk has thus
parallels with that of small area estimation of counts in cross-classifications. In
that context, besides borrowing strength from neighbouring areas or cells, auxil-
iary information, derived from external sources such as administrative registers
or a census, is exploited. We expect that improvements in risk assessment can
be achieved by introducing external information, especially when estimates of
risk are required for low sample cell frequencies, i.e. sample uniques, doubles,
etc.. For population surveys, external information about the association struc-
ture useful for risk estimation can be obtained from contingency tables built
on previous census data; updated information for at least some margins of the
contingency table induced by the disclosure scenario is also available. For in-
stance, current population counts for region, sex and age classes are available
from public registers; for other classifications, it might be the case that design
based calibrated estimators at the national level give sufficiently accurate fig-
ures for the population. For estimation of counts from a contingency table, the
so called structure preserving estimator (SPREE,[9]) makes precise use of the
above mentioned information. As a generalization of the SPREE considered in
[4], in this paper we analyse the generalized linear structural model (GLSM)
proposed by Zhang and Chambers [15] to estimate population cell frequencies.
These methods are described in Sect. 3.

Both the SPREE and the GLSM might produce estimates for population
frequencies that are lower than their sample counterparts. Based on the gen-
eralized iterative proportional fitting (GIPF, [5]), we propose a modification of
both methods that allows for this logical constraint and produces population es-
timates that are always higher than the corresponding sample frequencies, while
considering the structure of association of the table and its marginal constraints.

In Sect. 5 we then propose simple risk estimators based on the reciprocal of
the estimated frequency, including for comparison a Skinner-type estimator for
sample uniques that relies on a superpopulation model defined in Sect. 4. In
Sect. 7 we analyse the performance of these estimators by simulation. Having
a clear idea of the accuracy and precision of the risk estimators is indeed cru-
cial for risk assessment and subsequent data protection. Research has however
focused mainly on the definition of models for risk estimation, quantification of
uncertainty of estimates having received only minor attention. An approach to
tackle this problem is proposed by Rinott and Shlomo [11] in a specific setting.
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Our simulation study is described in Sect. 6 and consists of 1,000 pseudo-
samples drawn from the population collected at the 2001 Italian population
census, using the previous one (carried out in 1991) as a source of auxiliary
information. Specifically, the auxiliary information refers to the structure of as-
sociation in the 1991 census contingency table based on the variables that we
use to estimate the risk. We also use available information about the margins
of the above mentioned contingency table at current time, consisting in stan-
dard design-unbiased estimators of population cell frequencies and in population
counts that are usually available from administrative sources.

2 Estimating the Reidentification Risk for Microdata

Consider a disclosure scenario defining q categorical key variables, denoted by
Z1, . . . , Zq, with C1, . . . , Cq categories respectively. This scenario is appropri-
ate for most population surveys, where identification can be based on variables
such as place of residence, sex and age. Records with the same key values are
identical for reidentification and should have the same risk of disclosure. Cross-
classification of the key variables generates a contingency table with a total
number of K =

∏
k Ck cells at both the population and the sample level; cell

frequencies in the population and sample table, respectively, are denoted by Fk

and fk. Intuitively, rare traits in the population are the ones that could lead
to disclosure, but to be exposed to disclosure risk such rare records should also
be included in the sample. The problem is therefore discriminating between the
sample cells that are structurally small in the population and those that are
small in the microdata only because of sampling; direct or indirect inference
about the corresponding population size is required for these cells.

A large part of the literature has focused on estimating measures based on the
frequency of sample unique cells that are also population unique (see [1,7,12]).
These quantities can be used as global risk measures for the microdata file.
However it is also important to be able to assess the disclosure risk associated
with the release of individual records; if the population contingency table were
known, a simple risk measure for each record in cell k of the sample table could
be defined using the corresponding population cell size, rk = 1/Fk. As Fk is
unknown, the above definition is not usable. A solution is to specify a statistical
model for F = (F1, . . . , Fk) and derive suitable risk estimates, such as E(1/Fk|f).

The estimation of risk for low count cells is a challenging problem and to ob-
tain more accurate and precise estimators, all the available information should
be used. Typical applications consider very large and sparse contingency tables,
often with logical constraints inducing structural zeros. Estimating Fk is par-
ticularly difficult for high risk cells, having low sample and population sizes.
Finite population theory cannot account for all the information about the popu-
lation structure and would produce unreliable estimates, in particular when the
sampling fraction is small. In the next section we present estimation methods
that introduce auxiliary information for the estimation of counts in a cross-
classification.
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3 Small Area Estimators for Cross-Classifications

Small area methods allow for external information by introducing explicit or
implicit models for the relationship between the variable of interest and the
auxiliary variables; the definition of disclosure risk in terms of cells of a certain
contingency table suggests using the structure preserving estimators (SPREE,
[9]). For tabular data arising from cross-classification of categorical variables,
Purcell and Kish [9] propose that the external information obtained from an
administrative or a census source can be exploited to improve the estimation of
counts. The association structure completely describing the relationship among
variables is derived from a supplementary table that is observed at a previous
time t0 = t− L. This association structure is then updated using current infor-
mation at time t on the (partial) association between the variables present in
the allocation structure m. The allocation structure usually consists of margins
of the current frequency table; typically, counts on classes defined by sex and age
can be obtained by administrative records, so that these are often used to define
the allocation structure. Moreover, reliable survey estimates can be obtained
when aggregating over geography; these represent an additional information to
be used when updating the association among variables.

In [4] we have proposed SPREE based risk estimators. SPREE can exhibit
large bias if the association structure was subjected to a significant alteration
over time; to permit additional flexibility in the association structure, Zhang
and Chambers [15] introduce a class of log-linear structural models for the
cross-classification which generalizes SPREE by introducing linear models on
the parameters defining the interactions among variables.

In this paper we propose a simple risk estimator based on the GSLM method-
ology for estimation of population counts Fk.

Section 3.1 contains a brief summary of the SPREE method, whereas Sect. 3.2
presents the GLSM.

3.1 The Structure Preserving Estimator

Let us consider a three-way table; note that any multi-way table can be reduced
to three-way by properly re-defining the classification.

Let d denote the geographical or administrative domain, h the classification
given by the auxiliary variables (sex and age in our application) and let i be the
classification given by the other key variables.

Let Xdhi be the association structure, i.e. the table completely observed at
previous time t0 = t − L. Finally, define by Fdhi the counts of the current
contingency table to be estimated and by m the allocation structure, i.e. the
updated margins.

In its original formulation, SPREE consists in adjusting the Xdhi to agree
with the updated information in m, while preserving the relationships among
variables present in Xdhi as much as possible. The aim is to obtain estimates of
the current counts Fdhi that minimize the χ2 distance between Xdhi and Fdhi

with constraints given by m. As mentioned in [9], explicit solutions only exist
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in trivial cases. In general, Iterative Proportional Fitting (IPF), which consists
in iteratively adjusting to marginal constraints until convergence, is applied to
obtain an approximate solution, denoted by F̂ SPREE

dhi , to the above optimization
problem.

The IPF on Xdhi may produce estimates of the current cell counts that are
lower than the observed counts fdhi; to overcome this inconsistency, we pro-
pose to apply the generalized iterative proportional fitting (GIPF, [5]) instead
of IPF. In general, GIPF allows to obtain solution of a minimisation problem
under convex constraints, and can be easily applied with the constraints we have
imposed. This strategy clearly differs from simply equating estimates and sample
frequencies for the inconsistent cells.

Depending on the information available, SPREE allows different specifica-
tions of the allocation structure m. Here we consider the specification used
in our application (see Sect. 6), namely a pair of bivariate marginal tables:
m = ({F̂.hi}, {Fdh.}), where F̂.hi are design based estimates and Fdh. come from
administrative registers.

The structure preserving estimator is shown (see [9]) to preserve all the in-
teractions of Xdhi but those redefined by the allocation structure, so that the
higher order interactions of Fdhi are set equal to that of Xdhi; the bias of F̂ SPREE

dhi

therefore depends on the extent to which the equality of the interactions holds
for the data. For further details on SPREE see [9] and [15]. Note that with
respect to the Purcell and Kish estimator, the introduction of the additional
constraints F̂ SPREE

dhi > fdhi, d = 1 . . .D, h = 1 . . .H, i = 1 . . . I in the allocation
step is expected to induce slight modifications in the association structure.

3.2 The Generalized Linear Structural Model

Under the same setting and for the same estimation problem of Sect. 3.1, [15]
show that the SPREE is a special case of a generalized linear structural model
for the domain proportions. As before we consider the case that updated margins
m = ({F̂.hi}, {Fdh.}) are available for the current population table.

Using the notation introduced in the previous section, consider the within-
domain proportions θF

dhi and θX
dhi, relative to the target population table and

the auxiliary table at time t0, respectively:

θF
dhi =

Fdhi

Fdh.
,

∑
i

θF
dhi = 1,

θX
dhi being defined similarly.
Define now the saturated log-linear representation of the population counts:

log(Fdhi) = log(θF
dhi) + log(Fdh) = αF

0 + αF
d + αF

h + αF
i + αF

dh + αF
di + αF

hi + αF
dhi

and of the auxiliary complete table:

log(Xdhi) = log(θX
dhi)+log(Xdh) = αX

0 +αX
d +αX

h +αX
i +αX

dh+αX
di +αX

hi+αX
dhi .
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Let

µF
dhi = log(θF

dhi)−
1
I

∑
i

log(θF
dhi) = αF

i + αF
di + αF

hi + αF
dhi , (1)

µX
dhi = log(θX

dhi)−
1
I

∑
i

log(θX
dhi) = αX

i + αX
di + αX

hi + αX
dhi .

A generalized linear model is introduced to link the two structural models above
to inform Fdhi through the known complete table Xdhi. With a three-way table,
two different saturated models may be proposed. The first one assumes a linear
structure with constant regression coefficient among strata:

µF
dhi = λhi + β µX

dhi (2)

where
∑

i λhi = 0. This model is a proportional interaction model, and SPREE
is a special case of the latter for β = 1; see [15] for a more detailed description
of the implications of the models.

If the regression coefficients are allowed to vary among strata the model is

µF
dhi = λhi + βh µX

dhi (3)

and is equivalent to a stratified proportional interaction model

αF
i;h = λhi + βh αX

i;h ,

αF
di;h = βh αX

di;h .

Models (2) and (3) represent two examples of the so called generalized linear
structural model. Note that both refer to population quantities. For this reason
unbiased estimates of cell proportions θF

dhi are introduced in (1). The presence
of a complex sampling scheme is accounted for by selecting appropriate design
based estimators.

Following standard techniques for generalized linear models, the model pa-
rameters are estimated by iterative weighted least squares; here the weighting
matrix is designed to include the covariance matrix of the direct estimators
above; see [15] for details.

The procedure outlined produces first-step estimates of the population counts,
that we denote by F̃dhi. Note that under SPREE the first-step estimate is just
F̃dhi = Xdhi, i.e. the previous table without adjusting for the observed data.

Recalling that updated margins m = ({F̂.hi}, {Fdh.}) are available, exactly as
described for the SPREE methods, the first-step estimates can be adjusted to
match with m by IPF to obtain the final estimates F̂GLSM

dhi . Here again use of IPF
could produce estimated population cell counts that are lower than the observed
sample counts; for this reason we propose to modify the second estimating step by
introducing the addition constraints F̂GLSM

dhi > fdhi, d = 1 . . .D, h = 1 . . .H, i =
1 . . . I; the first step estimates are therefore adjusted to auxiliary marginal tables
by means of GIPF to ensure consistency with the sample frequencies.
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4 Risk Estimation Based on Loglinear Models

To gather information on small cells from larger ones, not relying on external
information, superpopulation models can be introduced. Skinner and Holmes
[13] use the structure of the table through a loglinear model which is fitted to
the data. They focus on sample uniques and model the Fdhi, d = 1 . . .D, h =
1 . . .H, i = 1 . . . I, as Poisson r.v. with mean πdhi. The mechanism generating
f is assumed to be a Bernoulli sampling with known probability p, so that
fdhi|λdhi ∼ Poisson(pπdhi); finally a loglinear model for the expected sample
frequencies pπdhi (where p only produces an offset term) is defined, from which
the πks are estimated. The superpopulation model implies that Fdhi−fdhi|fdhi ∼
Poisson((1 − p)πdhi) and this relation allows one to estimate the risk as the
expected value of 1/Fdhi given sample uniqueness

E (1/Fdhi|fdhi = 1) =
1− exp{−(1− p)π̂dhi}

(1 − p)π̂dhi
, (4)

by plugging in the loglinear estimates. The model defined in [13] has greater
generality, as it also specifies a lognormal distribution for the loglinear parame-
ters πdhi, log(πdhi) = µdhi + εdhi, εdhi ∼ N(0, σ2), exp(µdhi) being the expected
frequencies in the loglinear model assumed for the population, to account for
overdispersion due to lack of fit. Practical application of the method however
has dropped this assumption, partly because of possible negativity of empirical
Bayes estimates of the lognormal variance.

The approach relies on a single, good fitting loglinear model. Forster and
Webb [8] propose a related, fully Bayesian approach incorporating model uncer-
tainty through model averaging. Skinner and Shlomo [14] propose a model search
strategy explicitly targeted to risk estimation under the framework defined in
[13]. Because of the associated computational cost, our simulation study does
not apply the latter procedure; note however that the application described in
the paper considers a three-way representation of the contingency tables, and
the number of models to search would not be large in that case.

5 Risk Estimators

Having observed that the estimand is rdhi = 1/Fdhi for nonempty sample cells,
our first proposal simply estimates rk by

r̂SPREE
dhi = 1/F̂ SPREE

dhi . (5)

For the generalized linear structural model we use simple estimators analogous
to (5); model (2) is not analysed in this paper, see Sect. 7 for further details. We
restrict attention to the stratified model (3) to define

r̂GLSM
dhi = 1/F̂GLSM

dhi . (6)

Finally, we consider the risk estimator described in Sect. 4, namely

r̂SK
dhi =

1− exp{−(1− p)π̂dhi}
(1 − p)π̂dhi

. (7)
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6 Simulation Plan

We performed a simulation study consisting of 1,000 synthetic samples drawn
from a known real population, namely the population registered at the 2001
Italian Census for 6 Italian regions (Val d’Aosta, Piemonte, Toscana, Umbria,
Campania, Molise). Samples were drawn using the strategy of Labour Force
Survey (LFS), as detailed in [4]. Note that the LFS sampling design is used for
most Italian social surveys. The availability of the target population from which
our samples were extracted allows us to assess the performance of the estimators,
as clearly the estimand is known and equals 1/Fk for each cell k.

The six regions above were selected in light of their different geographical po-
sition (North, Center and South), the differences they exhibit in the distribution
of the key variables, their variability in the number of inhabitants (Val d’Aosta
and Molise are small regions where we expect higher risks of disclosure) and
finally the substantial variation of their sampling rates. The latter characteristic
results from sample size being planned to guarantee a target precision level of
LFS estimates. The LFS is based on a complex sample design with stratification
of municipalities. In each sample municipality, a systematic sample of households
is selected; each member of sampled households is included in the LFS sample.

In year 2001 the population of the six regions amounted to over 15 millions;
the effective sample size in terms of individuals results in over 80,000 records.

LFS estimates use sampling design weights obtained by a calibration process
that controls over known totals of sex and ages (see [3]). Although the actual
calibration process is more complex, for simplicity we have calibrated only on
sex by age at regional level.

The key variables selected are region of residence (6 classes as described
above), sex, age (in 20 classes), marital status (in 4 classes), education (in 5
classes). As the cell of the cross-tabulation is not a planned domain for LFS, we
expect that especially the cells with smaller population counts, i.e. higher risk
of identification if selected in the sample, will be present in a small subset of the
universe of all samples.

For the 1,000 simulated samples the average percentage of sample unique
cells was about 9% (overall, between 8 and 10%), with over 45% of empty cells
(overall, between 44 and 47%).

The estimators (5) and (6) described in this paper employ the association
structure at a previous time. Complete information on it is available from the
census conducted in year 1991. The temporal lag is large, but we can study the
performance of the method almost in its worst condition since we expect that
the stability in the association structure decreases with time. The estimators
also make use of available information on the margins of the above mentioned
contingency table at current time. In the terminology of Sect. 3.1, the allocation
structure has been defined as m = ({F̂.hi}, {Fdh.}). In our application Fdh. repre-
sents the 2001 census counts of the marginal table defined by sex by age (classes
indicated with h) by region (classes indicated with d). In practice however these
counts would come from updated administrative sources. On the other hand, the
counts F.hi of the marginal cross-table defined by education by marital status
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(classes denoted with i) by sex by age (classes denoted with h) are unknown; in
our application we resort to calibration estimates F̂.hi. Increasing the number
or detail of the key variables necessarily affects the precision of these estima-
tors; variable age was indeed recoded to five year classes to limit the variability
of direct estimators. The expected effect of increasing the number of cells is in
terms of increasing in turn the variability of our risk estimates. We plan to study
this in detail to draw more precise conclusions. The practical importance of this
limitation is dictated by the data release strategy: the key variables should enter
exactly as they appear in the released file. In fact, age is preferably released in
one year classes, a classification that might be too fine to allow precise direct
estimation of margins. In this case the problem of getting sufficiently precise es-
timates of marginal counts might be addressed by further modelling within the
proportional fitting procedure, an issue that we plan to address in the future.

7 Results

We discuss and compare the estimators listed in Sect. 5. We discarded the esti-
mator based on model (2) for two reasons. First, the associated computational
burden was heavy; second, a preliminary inspection of the population param-
eters (that are known in our simulation) revealed a certain variability among
strata defined by age by sex, so that model (3) was judged more appropriate.

As regards estimator (7), its formulation requires uniform selection probabil-
ities, an assumption that in our sampling design is met at a geographical detail
finer than the the regional one to which we refer. To adjust to our framework, for
each region d the mean sampling fraction pd computed over the corresponding
municipalities was specified in model (4). A simple analytic expression for the
risk is available for sample uniques only; for simplicity results are restricted to
this case. Finally, we fitted to the sample data the loglinear model having as
sufficient statistics the margins present in the allocation structure m.

Evaluation of the performance of risk estimators relies on bias and relative root
mean square error. There are two sources of variation in this assessment: the sam-
ple cell size and the population cell size. We consider a conditional assessment,
by analysing the above measures for low, fixed sample frequency (fk = 1, 2).
The assessment is clearly restricted to samples where the cell has been observed,
as the risk is, of course, not defined (and not of interest) when sample cell is
empty. By consequence, for the smallest cells, particularly for regions with lower
sampling rates, the performance criteria have sometimes been evaluated on a
very small number of samples. In this case, conclusions must be drawn with due
care but can still be useful to outline the expected pattern.

Figure 1 reports a graphical assessment of the performance of the three esti-
mators over sample uniques for all the available samples. To avoid plotting all
the replications of sample uniques across all simulations, for each cell we plot
a summary of the estimates over our 1,000 samples, showing the minimum and
maximum (grey dots) and the median (black dots) of the estimates over the
eligible samples. Figure 1 shows that in general all the estimators permit to
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Fig. 1. Performance of the estimators for sample uniques over all the simulated sam-
ples. Left to right: SPREE-type estimator r̂SPREE

dhi ; GLSM-type estimator r̂GLSM
dhi with

stratification; Skinner-type estimator r̂SK
dhi. Per cell minimum and maximum (grey dots)

and median (black dots) of the estimates over all available samples are plotted.

distinguish sample uniques between risky and safe, the first two exhibiting a
very similar beahviour, with the GLSM estimator being slightly less variable,
and apparently preferable to the third estimator. This is not surprising, as r̂SK

dhi

does not make use of auxiliary information.
Table 1 shows a conditional assessment of bias for sample unique cells. Overall,

the Skinner-type estimator exhibits underestimation of the true risk, the other
estimators showing a less marked bias on average. This is however the result of
an assessment over different population cell sizes, that is, different risk levels.
Figure 2 in the Appendix indicates more clearly the underestimating pattern of
all the estimators for very low population frequencies. Such underestimation of
extremely high risks seems more severe and persistent for r̂SK

dhi. With respect to
the Skinner-type estimator, the uppermost panels show a higher variability, a
result of structural models gathering information from an auxiliary population
contingency table, a feature that is not shared by estimator (7).

Table 1. Conditional assessment of bias for sample unique cells; mean number of
samples over which the assessment was conducted: 176.5

Min. 1st Qu. Median Mean 3rd Qu. Max.

r̂SPREE
dhi −0.99630 −0.00047 0.00045 −0.00871 0.00283 0.85710
r̂GLSM

dhi −0.99520 −0.00097 0.00037 −0.01876 0.00205 0.73310
r̂SK

dhi −0.99190 −0.00738 0.00007 −0.04404 0.00178 0.30840

As shown in Tab. 2, the bias of the first two estimators is already reduced for
sample doubles. Conditioning also on population cell frequency (figure not shown
here) we noticed the same underestimation pattern as before for the highest risk
cells (Fdhi ≤ 3), that remain difficult to estimate. In this case however the bias is
lower than that observed for sample uniques, always below 0.2 in absolute value.

To limit the computational burden, our study only evaluates the variability
of the estimators across the simulated samples; in particular we consider the



Use of Auxiliary Information in Risk Estimation 223

Table 2. Conditional assessment of bias for sample doubles; mean number of samples
over which the assessment was conducted: 119.60

Min. 1st Qu. Median Mean 3rd Qu. Max.

r̂SPREE
dhi −0.43710 −0.00120 0.00016 0.00233 0.00089 0.37700
r̂GLSM

dhi −0.44220 −0.00144 0.00012 −0.00058 0.00074 0.29810

relative root MSE (RRMSE). In practical applications, the variability of the
estimators could be assessed by bootstrap; model-based bootstrap as suggested
in [2] (sect. C6) seems particularly suited to the framework of GLSM-type risk
estimators.

The figures for the RRMSE (Table 3) indicate that the GSLM based estimator
with stratum specific structure coefficients is preferable to the other estimators.

Table 3. Conditional assessment of RRMSE for sample uniques and doubles; mean
number of samples over which the assessment was conducted: 176.5 and 119.6

Min. 1st Qu. Median Mean 3rd Qu. Max.

fdhi = 1
r̂SPREE

dhi 0.00000 0.36750 0.62480 0.85280 0.98570 17.09000
r̂GLSM

dhi 0.00000 0.37080 0.61280 0.82170 0.95200 11.04000

r̂SK
dhi 0.01756 0.44750 0.63860 0.91830 1.04500 7.39100

fdhi = 2
r̂SPREE

dhi 0.00000 0.31840 0.46990 0.58330 0.70550 6.20600
r̂GLSM

dhi 0.00000 0.31420 0.45910 0.56080 0.68330 4.68100

8 Comments

In this paper we presented a comparative analysis of some simple risk estima-
tors based on a linear structural method that is designed to estimate frequency
in a population contingency table using auxiliary information. We considered
the structure preserving estimator (SPREE) and a generalization of the latter,
namely the generalized linear structural model (GLSM) estimator. In both cases
we have modified the estimation process so as to ensure that the observed cell fre-
quency fdhi does not exceed the corresponding estimated population frequency.
Once the frequency has been estimated, we simply derived the risk estimate as
the reciprocal of the estimated population count. We also considered for compar-
ison a Skinner-type estimator based on a Poisson superpopulation model with
loglinear modelling of the observed counts.

Results shown are restricted to the most challenging case of cells with low
sample frequencies. The simulation experiment conducted clearly indicates that
all the estimators tends to underestimate very high risk records. The Skinner
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type estimator, not relying on detailed information on the population table at
a previous time nor on any other external information, shows a more evident
tendency to a negative bias; the two other estimators benefit from external in-
formation, even though in the smallest regions, characterized by the highest
sampling fractions, some cells are not well captured by the model. With respect
to the SPREE, the GLSM estimator is preferable in terms of MSE.

Whereas the estimator (7) only requires the observed data and information
about the sampling fraction, the structural estimators (5) and (6) come with
some computational and administrative burden, as they require an estimation
process (especially the GLSM estimator) and management of census data. The
process of building the appropriate table is an important step that requires at
least some insights about the available information and the classes in which
estimates with sufficient precision can be obtained from the sample at hand.
The population table from which the association structure is borrowed must be
properly organized; besides that, margins must be computed from the available
sources such as administrative archives and the sample on release. Finally, in
order for the variables collected at a census to be compatible with the key vari-
ables available in the survey microdata, treatments, such as recoding, are usually
necessary, as sometimes the definitions may vary. This process is nontrivial and
might be computationally demanding, depending on the size of the population.
An advantage is that the census table has to be collected and organised only once
in several years. Indeed the same association structure is modelled at subsequent
releases, the only change being the update of margins.

In the context outlined, the GLSM based estimator (6) emerges as a more ac-
curate and precise estimator. This comes at the costs mentioned above. Loglinear
model estimation required for the estimator (7) relies on maximum likelihood;
although the procedure is well known and readily available in standard software,
when large tables are analysed, the associated computational costs may also be
high.
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Appendix
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GLSM-type estimator r̂GLSM
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Fig. 2. Plot of bias vs population cell frequencies for sample unique cells. Grey broken
lines represent 25% and 75% percentiles of bias for given population cell size, grey dots
joined by a solid line represent medians of the same quantities.
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Abstract. Partially synthetic data comprise the units originally sur-
veyed with some collected values, such as sensitive values at high risk
of disclosure or values of key identifiers, replaced with multiple draws
from statistical models. Because the original records remain on the file,
intruders may be able to link those records to external databases, even
though values are synthesized. We illustrate how statistical agencies can
evaluate the risks of identification disclosures before releasing such data.
We compute risk measures when intruders know who is in the sample
and when the intruders do not know who is in the sample. We use clas-
sification and regression trees to synthesize data from the U.S. Current
Population Survey.

Keywords: CART, Disclosure, Risk, Synthetic data.

1 Introduction

Several national statistical agencies disseminate multiply-imputed, partially syn-
thetic data to the public. These comprise the units originally surveyed with only
some collected values replaced with multiple imputations [1,2]. For example,
in the Survey of Consumer Finances, the U.S. Federal Reserve Board replaces
monetary values at high disclosure risk with multiple imputations, releasing a
mixture of imputed values and the not replaced, collected values [3]. The U.S.
Bureau of the Census protects data in the Survey of Income and Program Par-
ticipation [4] and in longitudinal business databases [5,6] by replacing all values
of sensitive variables with multiple imputations, leaving non-sensitive variables
at their actual values. They also have created synthesized origin-destination ma-
trices, i.e. where people live and work, available to the public as maps via the
web (On The Map, http://lehdmap.did.census.gov/). They plan to protect the
identities of people in group quarters (e.g., prisons, shelters) in the American
Communities Survey by replacing quasi-identifiers for records at high disclosure
risk with imputations. Partially synthetic, public use data are being developed
for the Longitudinal Business Database, the Longitudinal Employer-Household
Dynamics survey, and the American Communities Survey veterans and full sam-
ple data. Other examples of partially synthetic data are in [7,8,9,10].
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Because the original records remain on the file, intruders may be able to link
those records to external databases, even though values are synthesized. It is
prudent for agencies to assess the risks of such identification disclosures before
releasing the file. When they are too high, additional synthesis or some other
action is needed before release. In this article, we illustrate how to compute risks
of identification disclosure for partially synthetic data using a subset of the U. S.
Current Population Survey. We show how to incorporate intruders’ uncertainty
about which records are in the sample and how to assess different synthesis
strategies. We also illustrate an application of classification and regression tree
methodology for generating partially synthetic data.

2 Review of Partially Synthetic Data

The agency constructs partially synthetic datasets based on the s records in
the observed data, Dobs, in a two-part process. First, the agency selects the
values from the observed data that will be replaced with imputations. Second,
the agency imputes new values to replace those selected values. Let Yrep,i be all
the imputed (replaced) values in the ith synthetic dataset, and let Ynrep be all
unchanged (not replaced) values. The values in Ynrep are the same in all syn-
thetic datasets. Each synthetic dataset, Di, is then comprised of (Yrep,i, Ynrep).
Imputations are made independently for i = 1, . . . , m times to yield m different
synthetic datasets. These synthetic datasets are released to the public.

When using parametric imputation models, the Yrep,i should be generated
from the Bayesian posterior predictive distribution of (Yrep,i|Dobs), or some ap-
proximation to it such as the sequential regression imputation methods [11].
In this article, we generate the Yrep,i from a series of regression tree (CART)
models. These models are described in Section 4.1.

Inferences about some scalar estimand, say Q, are obtained by combining
results from the Di. Specifically, suppose that the data analyst estimates Q with
some point estimator q and estimates the variance of q with some estimator v.
For i = 1, . . . , m, let qi and vi be respectively the values of q and v in Di. It
is assumed that the analyst determines qi and vi as if Di was in fact a random
sample collected with the original sampling design. The following quantities are
needed for inferences for scalar Q:

q̄m =
m∑

i=1

qi/m (1)

bm =
m∑

i=1

(qi − q̄m)2/(m− 1) (2)

v̄m =
m∑

i=1

vi/m . (3)

The analyst then can use q̄m to estimate Q and

Tp = bm/m + v̄m (4)
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to estimate the variance of q̄m. When s is large, inferences for scalar Q can be
based on t-distributions with degrees of freedom νp = (m− 1)(1 + r−1

m )2, where
rm = (m−1bm/v̄m). Derivations of these methods are presented in [2]. Extensions
for multivariate Q are presented in [12].

3 Identification Disclosure Risk Measures for Partial
Synthesis

To evaluate disclosure risks, we compute probabilities of identification by fol-
lowing the approach in [13]. Related approaches for non-synthetic data are
in [14,15,16,17]. Roughly, in this approach we mimic the behavior of an ill-
intentioned user of the released data who possesses the true values of the
quasi-identifiers for selected target records (or even the entire population). The
intruder has a vector of information, t, on a particular target unit in the popu-
lation which may or may not correspond to a unit in the m partially synthetic
datasets, D = {D1, . . . , Dm}. Let t0 be the unique identifier (e.g., full name and
address of a survey respondent) of the target, and let dj0 be the (not released)
unique identifier for record j in D, where j = 1, . . . , s. Let M be any information
released about the simulation models.

The intruder’s goal is to match unit j in D to the target when dj0 = t0, and not
to match when dj0 �= t0 for any j ∈ D. Let J be a random variable that equals
j when dj0 = t0 for j ∈ D and equals s + 1 when dj0 = t0 for some j �∈ D. The
intruder thus seeks to calculate the Pr(J = j|t,D, M) for j = 1, . . . , s + 1. He
or she then would decide whether or not any of the identification probabilities
for j = 1, . . . , s are large enough to declare an identification. Let Yrep be all
original values of the variables that were synthesized. Because the intruder does
not know the actual values in Yrep, he or she should integrate over its possible
values when computing the match probabilities. Hence, for each record in D, we
compute

Pr(J = j|t,D, M) =
∫

Pr(J = j|t,D, Yrep, M)Pr(Yrep|t,D, M)dYrep . (5)

This construction suggests a Monte Carlo approach to estimating each Pr(J =
j|t,D, M). First, sample a value of Yrep from Pr(Yrep|t,D, M). Let Y new rep-
resent one set of simulated values. Second, compute Pr(J = j|t,D, Yrep =
Y new, M) using exact or, for continuous synthesized variables, distance-based
matching assuming Y new are collected values. This two-step process is iterated
R times, where ideally R is large, and (5) is estimated as the average of the resul-
tant R values of Pr(J = j|t,D, Yrep = Y new, M). When M has no information,
the intruder can treat the simulated values in each Yrep,i as plausible draws of
Yrep.

To illustrate, suppose that age, race, and sex are the only quasi-identifiers in
a survey of households. The agency releases m > 1 partially synthetic datasets
with all values of race and age synthesized and sex not changed. We suppose
that the agency does not release any information about the imputation model
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but does reveal which variables are synthesized. Suppose that an intruder seeks
to identify a white male aged 45, and he knows that this target is in the sample.
In each Di, the intruder would search for all records matching the target on
age, race, and sex. Let Nt,i be the number of matching records in Di, where
i = 1, . . . , m. When no one with all of those characteristics is in Di, set Nt,i

equal to the number of males in Dobs, i.e., match on all non-simulated quasi-
identifiers. For j = 1, . . . , s,

Pr(J = j|t,D, M) = (1/m)
∑

i

(1/Nt,i)(Y new
ij = t) , (6)

where (Y new
ij = t) = 1 when record j is among the Nt,i matches in Di and equals

zero otherwise. We note that Pr(J = s + 1|t,D, M) = 0 because the intruder
knows this target is in the sample.

Now suppose that the intruder does not know that this target is in the sample.
For j = 1, . . . , s, we have to replace Nt,i in (6) with Ft, the number of records in
the population that match the target on age, race, and sex. When the intruder
and the agency do not know Ft, it can be estimated using the approach in [17],
which assumes that the population counts follow an all-two-way-interactions log-
linear model. The agency can determine the estimated counts, F̂t, by fitting this
log-linear model with Dobs. Alternatively, since Dobs is in general not available
to intruders, the agency can fit a log-linear model with each Di, resulting in
the estimates F̂t,i for i = 1, . . . , m. We note that Pr(J = s + 1|t,D, M) =
1−

∑s
j=1 Pr(J = j|t,D, M).

For some target records, the value of Nt,i might exceed Ft (or F̂t if it is used).
It should not exceed F̂t,i, since F̂t,i is required to be at least as large as Nt,i.
For such cases, we presume that the intruder sets Pr(J = s + 1|t,D, M) = 0
and picks one of the matching records at random. To account for this case, we
can re-write (6) for j = 1, . . . , s as

Pr(J = j|t,D, M) = (1/m)
∑

i

min (1/Ft, 1/Nt,i) (Y new
ij = t) . (7)

As suggested in [16], we quantify disclosure risks with summaries of the iden-
tification probabilities in (6) and (7). It is reasonable to assume that the intruder
selects as a match for t the record j with the highest value of Pr(J = j|t,D, M),
if a unique maximum exists. We consider three disclosure risk measures. To cal-
culate these measures, we need some further definitions. Let T = {t1, . . . , t|T|}
be the set of the intruder’s targets. Let cj be the number of records in the released
data with the highest match probability for the target tj ; let Ij = 1 if the true
match is among the cj units and Ij = 0 otherwise. Let Kj = 1 when cjIj = 1 and
Kj = 0 otherwise. The expected match risk is defined as

∑
j∈T (1/cj)Ij . When

Ij = 1 and cj > 1, the contribution of unit j to the expected match risk reflects
the intruder randomly guessing at the correct match from the cj candidates.
The true match risk equals

∑
j∈T Kj . Finally, we introduce the true match rate

equal to
∑

j∈T Kj/
∑

j∈T (cj = 1), which is the percentage of true matches for
the targets that have a unique match in D.
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Table 1. Description of variables used in the empirical studies

Variable Label Range

Sex X male, female
Race R white, black, American Indian, Asian
Marital status M 7 categories, coded 1–7
Highest attained education level E 16 categories, coded 31–46
Age (years) G 0 – 90
Child support payments ($) C 0, 1 – 23,917
Social security payments ($) S 0, 1 – 50,000
Household alimony payments ($) A 0, 1 – 54,008
Household property taxes ($) P 0, 1 – 99,997
Household income ($) I -21,011 – 768,742

4 Empirical Evaluation

We simulate partial synthesis for a subset of public release data from the March
2000 U.S. Current Population Survey. The data comprise ten variables measured
on N = 51, 016 heads of households. The variables, displayed in Table 1, were
selected and provided by statisticians at the U.S. Bureau of the Census. Similar
data are used in [18] to illustrate and evaluate releasing fully synthetic data.

Marginally, there are ample numbers of people in each sex, race, marital sta-
tus, and education category. Many cross-classifications have few people, espe-
cially those involving minorities with M �∈ {1, 7}. There are 521 records with
unique combinations of age, race, marital status, and sex. There are 284 com-
binations of the four variables that have only two records in the dataset. There
are 2064 empty cells in the four-way contingency table.

We treat the N records as a population and take a random sample of n =
10, 000 for Dobs. We consider age, race, marital status, and sex to be quasi-
identifiers that intruders may know precisely. Cross-classification of these four
variables in the sample yields 473 sample uniques, 241 duplicates and 2909 empty
cells in the four-way contingency table. Intruders might have access to other
variables on the file, such as property taxes. Thus, the computations in this
section serve to illustrate our suggested disclosure risk measures rather than to
evaluate the actual disclosure risks for this specific dataset (which is already in
the public domain).

We generate synthetic datasets for each of two scenarios: replace all values
of age, marital status, and race without changing sex; and, replace all values of
marital status and race without changing age and sex. The synthetic data are
generated using regression trees, as we now describe.

4.1 CART Synthesis Models

CART models are a flexible tool for estimating the conditional distribution of a
univariate outcome given multivariate predictors. Essentially, the CART model
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partitions the predictor space so that subsets of units formed by the partitions
have relatively homogeneous outcomes. The partitions are found by recursive
binary splits of the predictors. The series of splits can be effectively represented
by a tree structure, with leaves corresponding to the subsets of units.

CART models also can be used to generate partially synthetic data [19]. To
synthesize all values of age, marital status, and race, we proceed as follows. First,
using Dobs we fit the tree of age on all other variables except race and marital
status. Label this tree Y(G). We require a minimum of five records in each leaf of
the tree and do not prune it; see [19] for discussion of pruning and minimum leaf
size. Let LGw be the wth leaf in Y(G), and let Y LGw

(G) be the nLGw values of Y(G)

in leaf LGw. In each LGw in the tree, we generate a new set of values by drawing
from Y LGw

(G) using the Bayesian bootstrap [20]. These sampled values are the
replacement imputations for the nLGw units that belong to LGw. Repeating the
Bayesian bootstrap in each leaf of the age tree results in the ith set of synthetic
ages, Y(G)rep,i.

To avoid releasing only values of the observed ages in each leaf, we could
take an additional step suggested in [19]. In each leaf, we could estimate the
density of the bootstrapped values using a Gaussian kernel density estimator
with support over the smallest to the largest value of Y(G). Then, for each unit,
we would sample randomly from the estimated density in that unit’s leaf using
an inverse-cdf method. The sampled values rounded to the nearest integer would
be the Y(G)rep,i. We do not take this extra step here.

Imputations are next made for marital status. Using Dobs, we fit the tree,
Y(M), with all variables except race as predictors. To maintain consistency with
Y(G)rep,i, units’ leaves in Y(M) are located using Y(G)rep,i. Occasionally, some
units may have combinations of values that do not belong to one of the leaves of
Y(M). For these units, we search up the tree until we find a node that contains the
combination, then treat that node as if it were the unit’s leaf. Once each unit’s
leaf is located, values of Y(M)rep,i are generated using the Bayesian bootstrap.
Imputing races follows the same process: we fit the tree Y(R) using all variables as
predictors, place each unit in the leaves of Y(R) based on their synthesized values
of age and marital status, and sample new races using the Bayesian bootstrap.

The process is repeated independently m = 5 times. These m datasets would
be released to the public. All CART models are fit in S-Plus using the “tree”
function. It takes about five minutes to generate five synthetic datasets with all
three variables. The sequential order of imputation is G−M −R; see [19] for a
discussion of the ordering of the trees. The synthesis of only marital status and
race is similar except that the process begins with marital status. Although we
use the CART method only to generate categorical data, it is straightforward to
apply the method to generate continuous variables [19].

4.2 Data Utility

Evaluating disclosure risk is, of course, only part of the story. We could cre-
ate completely worthless data and have very low disclosure risks. Hence, it is
important to examine data usefulness when evaluating disclosure risks.



Identification Disclosure Risks in Partially Synthetic Data 233

Table 2. Point estimates and standard errors for observed data, synthetic data with
age not replaced, and synthetic data with age replaced

Observed Data True Age Synth. Age

Estimand qobs (SE) q̄5 (
√

Tp) q̄5 (
√

Tp)

Avg. education for married black females 39.5 (.21) 39.6 (.21) 39.7 (.20)

Coefficient in regression of
√

C on:
Intercept -94.5 (27) -94.5 (27) -95.3 (27)
Female 12.5 (5.4) 12.4 (5.4) 12.2 (5.4)
Non-white -1.72 (4.7) -0.34 (4.9) -0.53 (4.8)
Education 3.44 (0.6) 3.44 (.60) 3.46 (0.6)
Number of youths in house 1.33 (1.6) 1.34 (1.6) 1.37 (1.6)

Coefficient in regression of
√

S on:
Intercept 81.0 (4.5) 78.1 (4.6) 79.4 (4.9)
Female -11.1 (1.1) -11.1 (1.1) -10.6 (1.1)
Black -7.0 (1.6) -6.3 (1.9) -5.3 (1.8)
American Indian -8.2 (4.7) -8.9 (7.1) -10.8 (5.5)
Asian 0.1 (3.3) -3.1 (3.8) 2.3 (3.7)
Widowed 5.0 (1.2) 4.7 (1.2) 4.3 (1.2)
Divorced -3.0 (1.7) -0.3 (1.8) 0.3 (1.8)
Single -1.4 (2.1) 2.0 (2.1) 3.5 (2.2)
High school 3.6 (1.1) 3.8 (1.1) 3.8 (1.1)
Some college 5.2 (1.3) 5.1 (1.3) 5.7 (1.3)
College degree 8.3 (1.7) 8.3 (1.7) 8.1 (1.7)
Advanced degree 10.1 (2.1) 9.8 (2.2) 9.8 (2.2)
Age 0.22 (.06) 0.25 (.06) 0.23 (.07)

Coefficient in regression of log(I) on
Intercept 4.80 (.10) 4.78 (.10) 4.82 (.15)
Black -0.14 (.03) -0.16 (.03) -0.12 (.03)
American Indian -0.20 (.07) -0.21 (.09) -0.12 (.08)
Asian -0.01 (.05) 0.04 (.06) 0.01 (.05)
Female 0.02 (.02) 0.01 (.03) -0.002 (.03)
Married in armed forces -0.04 (.10) -0.30 (.15) -0.19 (.11)
Widowed -0.07 (.06) -0.17 (.07) -0.30 (.08)
Divorced -0.11 (.04) -0.14 (.05) -0.13 (.04)
Separated -0.28 (.09) -0.13 (.11) -0.24 (.10)
Single -0.15 (.04) -0.11 (.04) -0.12 (.04)
Education 0.113 (.003) 0.113 (.003) 0.114 (.003)
Household size > 1 0.54 (.03) 0.54 (.03) 0.52 (.03)
Females married in armed forces -0.49 (.14) -0.22 (.16) -0.39 (.14)
Widowed females -0.27 (.07) -0.15 (.07) -.07 (.08)
Divorced females -0.34 (.05) -0.31 (.06) -0.33 (.06)
Separated females -0.45 (.11) -0.48 (.13) -0.41 (.12)
Single females -0.35 (.05) -0.37 (.05) -0.33 (.05)
Age 0.043 (.003) 0.043 (.003) .041 (.003)
Age2 ×1000 -0.42 (.03) -0.42 (.03) -0.41 (.03)
Property tax ×10000 0.27 (.03) 0.29 (.03) 0.29 (.03)

Child support regression fit using records with C > 0. Social security regression fit
using records with S > 0 and G > 54. Income regression fit using records with I > 0.
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Table 2 provides some evidence of the usefulness of the five synthetic datasets.
It displays the point estimates and standard errors for several quantities based
on the observed and partially synthetic data. Synthetic estimates are computed
from the m = 5 datasets using the methods described in Section 2. The synthetic
data point estimates are generally within two standard errors of the observed
data point estimates. The biggest differences are for quantities associated with
small sub-groups, such as married in the armed forces. We believe that the results
in Table 2 are evidence of good quality, especially since the regressions involved
subsets of data, transformations of variables, and interaction effects. We note
that these results were obtained without any tuning other than to decide on the
minimum number of records for each leaf and the order of synthesis. We also
note that the results for synthesizing or not synthesizing age are similar.

4.3 Disclosure Risk

We consider four scenarios with different assumptions about the information
available to the intruder. Across all scenarios, we assume the intruder knows the
sex, age, race and marital status of some target records, for example from an
external database.

– Scenario I: the intruder knows the identifiers for 10,000 randomly specified
units in the population but does not know who is in the survey.

– Scenario II: the intruder knows the identifiers for 10,000 randomly specified
units in the population and knows who is in the survey.

– Scenario III: the intruder knows the identifiers for all N = 51, 016 units in
the population but does not know who is in the survey.

– Scenario IV: the intruder knows the identifiers for all N = 51, 016 units in
the population and knows who is in the survey.

For Scenarios I and II, 1,968 of the intruder’s target records are included in Dobs.
For Scenario I, we estimate each F̂t,i by fitting the all-two-way-interactions log-
linear model on each Di. An intruder might do this if he is unsure whether or
not his 10, 000 records are representative of the population. It is prudent for
the agency to assess the disclosure risk using estimated counts based on Dobs

as well. For Scenario III, the intruder presumably would use the known values
of Ft. For interest, we report the results for the first and third scenarios using
both estimated and true population counts.

For Scenarios I and III, we consider three intruder strategies. The first is
that the intruder matches to the released data no matter what the value of
Pr(J = s + 1|t,D, M). That is, the intruder ignores the chance that a record
is not in the sample. The second is that the intruder matches to the released
data only when Pr(J = s + 1|t,D, M) < γ, where 0 < γ < 1. The third is that
the intruder does not match whenever Pr(J = s + 1|t,D, M) is the maximum
probability for the target.

We compare the risks when only race and marital status are synthesized to
the risks when age, race, and marital status are synthesized.
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Table 3. Disclosure risks when only marital status and race are synthesized and in-
truder matches regardless of the value of Pr(J = s + 1|t, D, M)

Scen. I Scen. II Scen. III Scen. IV

Ft F̂t,i Ft F̂t,i

Expected match risk 72.3 71.6 74.7 367.8 361.1 365.1
True match risk 26 40 37 131 201 172
Number of single matches 1,942 3,445 593 9,769 17,555 2,905
True match rate (%) 1.34 1.16 6.24 1.34 1.14 5.92

Synthesis of Race and Marital Status Only. Table 3 displays the risk
measures when age is left unchanged and the intruder matches regardless of the
value of Pr(J = s + 1|t,D, M). In all scenarios, the great majority of declared
matches are incorrect, as evident by the low true match rates. True match rates
are highest when the intruder knows who is in the sample, as might be expected.
Given T, the expected match risk measures are very similar for an intruder with
response knowledge and an intruder not knowing who participated in the survey.
The true match risk measures are higher when using the F̂t,i instead of Ft. This
is because the number of matches with cj = 1 is higher when matching with F̂t,i

instead of Ft, as evident in the third row of the table.
Naturally, the numbers of expected and true matches increase when the in-

truder has information for the whole population rather than only for a sam-
ple. Quite simply, there are more targets to match. The expected and true risk
measures when only around 2000 records are in T ∩ Dobs are roughly 1/5 the
magnitudes when all 10000 records in D are in T ∩Dobs.

The results in Table 3 presume that the intruder always considers the record
j with maximum Pr(J = j|t,D, M), where j = 1, . . . , s a match no matter
how small this maximum is. With this strategy, the number of true matches
is swamped by the number of false matches. For targets with J = s + 1 as
the maximum match probability, the intruder might not match if he deems
Pr(J = s + 1|t,D, M) to be too high, say exceeding a threshold γ. Large values
of γ result in a higher number of true and false matches. Small values of γ reduce
the chance of false matches but miss out on some true matches. Table 4 presents
the risk measures for Scenario I and III using γ = 0.5. As expected, there is a
reduction in both the number of true matches and the total number of single
matches. In fact, in Scenario I the intruder detects very few correct matches.
However, in both scenarios the true match rate increases from around 1% to at
least 8%.

The intruder also might choose not to match for targets with Pr(J = s +
1|t,D, M) ≥ Pr(J = j|t,D, M) for j = 1, . . . , s. Applying this strategy, the
intruder obtains 2 true matches (with a match rate of 50%) in Scenario I and 6
true matches (with a match rate of 20%) in Scenario III.

Synthesis of Age, Race, and Marital Status. The agency may decide that
the disclosure risks are too high when synthesizing only race and marital status.
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Table 4. Disclosure risks for Scenario I and III when only marital status and race are
synthesized and the intruder matches if Pr(J = s + 1|t, D, M) ≤ 0.5

Scen. I Scen. III

Ft F̂t,i Ft F̂t,i

Expected match risk 3 1 9.5 6
True match risk 3 1 9 6
Number of single matches 17 11 102 64
True match rate (%) 17.65 9.09 8.82 9.37

Table 5. Disclosure risks when age, marital status, and race are synthesized and in-
truder matches regardless of the value of Pr(J = s + 1|t, D, M)

Scen. I Scen. II Scen. III Scen. IV

Ft F̂t,i Ft F̂t,i

Expected match risk 3.5 3.0 4.2 14.0 14.7 16.0
True match risk 2 3 3 4 12 12
Number of single matches 2,651 6,879 1,252 13,641 34,972 6,359
True match rate (%) 0.075 0.044 0.240 0.029 0.034 0.189

Table 6. Disclosure risks for Scenario I and III when age, marital status, and race are
synthesized and the intruder matches if Pr(J = s + 1|t, D, M) ≤ 0.5

Scen. I Scen. III

Ft F̂t,i Ft F̂t,i

Expected match risk 0 0 0 0
True match risk 0 0 0 0
Number of single matches 6 6 48 41
True match rate (%) 0 0 0 0

Table 5 displays the results if age is also synthesized, assuming that the intruder
matches no matter what. The risks decrease significantly. The true match rate
drops well below 1% for all scenarios. Table 6 displays the risks when the intruder
matches only if Pr(J = s + 1|t,D, M) < 0.5. The intruder cannot detect any
correct matches.

Synthesizing age appears to reduce the disclosure risks substantially for this
dataset. Given the similarity in the data utility of the two approaches, we suspect
that many agencies would opt to synthesize age.

5 Concluding Remarks

The simulation results suggest several conclusions about disclosure risks in par-
tially synthetic data. These include:
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1. Knowing which targets are in the sample increases the true match rate com-
pared to not knowing which targets are in the sample, so that disclosure
risks increase.

2. Intruders who match to the synthetic data regardless of the value of Pr(J =
s + 1|t,D, M) can find more true matches at the expense of a higher false
match rate than intruders who would not match when Pr(J = s+1|t,D, M)
is large.

3. There are differences in the risk measures when using estimated population
counts versus true population counts. However, they tend to be small and
arguably not worth worrying about.

4. Synthesizing variables that are primary contributors to the disclosure risks,
in particular age, can reduce disclosure risks substantially.

In general, it is difficult for the agency to know what information is owned
by intruders. We recommend that the agency evaluate disclosure risks under
conservative but realistic assumptions of intruder knowledge. For example, to
begin, the agency can assume that intruders know exactly who is in the sample
and have correct values of all quasi-identifiers. The agency then can back off
these assumptions, for example assuming that intruders do not know who is in
the sample or that intruders do now know some quasi-identifiers. By computing
risk and utility under a variety of assumptions, the agency can decide if the
disclosure risks are adequately low for the proposed microdata release.
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Abstract. This short paper provides a synthesis of the statistical dis-
closure limitation and computer science data privacy approaches to mea-
suring the confidentiality protections provided by fully synthetic data.
Since all elements of the data records in the release file derived from fully
synthetic data are sampled from an appropriate probability distribution,
they do not represent “real data,” but there is still a disclosure risk. In
SDL this risk is summarized by the inferential disclosure probability. In
privacy-protected database queries, this risk is measured by the differ-
ential privacy ratio. The two are closely related. This result (not new) is
demonstrated and examples are provided from recent work.

1 Introduction

When Rubin (1993) introduced the idea of fully synthetic data , there was
considerable appeal to releasing data that represented “no actual individual’s”
responses, and skepticism regarding its feasibility. Subsequent research has ade-
quately demonstrated the feasibility. However, the basic question “How much
protection does the synthetic data methodology provide?” remained largely
unanswered. The reason is basic: statistical disclosure limitation (SDL) did not
provide an adequate framework to answer the question. In the intervening 15
years, a well-developed methodology emerged in the computer science (CS) liter-
ature on privacy in databases that allows a synthesis of the techniques used in dis-
closure limitation and privacy-preserving data mining. The key to this synthesis
is the recognition that the privacy measures proposed by the computer scientists
and the statistical disclosure limitation methods share a common fundamental–
the conditional distribution of the release data, given the underlying confidential
data. This short paper provides a roadmap and some examples for moving be-
tween the SDL and CS concepts that relate to measuring the protection afforded
by synthetic data and the resulting analytical validity of the release data.

2 Definitions

Let X represent a confidential database organized as n rows and k columns of a
database table. For clarity in this exposition, assume that only discrete variables
may be released and that all variables have been coded as binary outcomes
(e.g., yes-no answers). Although one of the great conceptual advantages of fully
synthetic data is the possibility of combining continuous and discrete variables,
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there is no loss of generality in the assumption that the release data consist of
contingency tables because all interactions up to k-way are allowed and there are
no restrictions on the underlying probabilities. As we will see below, there are
practical restrictions on the direct application of these techniques to databases
where k is large. We are not going to discuss sampling as a disclosure limitation
technique; consequently, we will assume that n is the population and ni = 1 is
a population unique. That is, there is one, and only one row of X in which ith

column has a 1.
Let π be the (k × 1) vector of probabilities associated with the complete

table, where all elements of π are strictly positive. Assume that the contingency

table is summarized by a vector of counts n that is also (k × 1) with n =
k∑

i=1

ni.

Without loss of generality, assume that the confidential data are distributed
Multinomial, n ∼ M (n, π) . Summarize all prior information about the parame-
ters by assuming that they are drawn from a Dirichlet distribution, π ∼ D(α),

where α is the (k × 1) vector of prior sample sizes with α0 =
k∑

i=1

αi. Then, the

posterior predictive distribution of the confidential data can be constructed by
noting that π ∼ D(α + n) a posteriori.

Let X̃ denote a single synthetic data set based on X. Suppose that X̃ is (m× k).
The synthetic data can be constructed by first sampling π̃ ∼ D(α + n) , then
constructing the rows of X̃ from counts sampled from M (m, π̃) . Because of the
way X̃ is constructed, we can represent the conditional distribution of X̃ given X
using

Pr [m|n, MD] = Eπ|n [M (m, π) |MD] (1)

where we have noted explicitly that the conditional distribution depends upon
the Multinomial-Dirichlet (MD).

The argument leading up to the construction of Pr [m|n, MD] above is a
complete Bayesian analysis, and equation (1) defines the posterior predictive
distribution of X̃ given X . But the Bayesian analysis is not essential to the syn-
thetic data construction. Any transition function Pr [m|n] that defines a proper
conditional distribution for the synthetic counts given the confidential counts
can be used to synthesize data. Dwork et al. (2006) define a synthesizer for the
same confidential database problem by sampling k i.i.d. random variables from
the Laplace (double exponential) distribution Lap (0, 2/ε) , where the reason for
defining the scale parameter in the form shown will be made clear below. Let y
be the (k × 1) vector of Laplacian random variables. Define the synthetic counts
as m = n + y. Using the properties of the Laplace distribution, they construct
an alternative conditional distribution

Pr [m|n, Lap] = Pr [n + y|n, ε] . (2)

The above discussion has been in terms of conditional distributions. A generic
random sanitizer is defined as any function X̃ ← San (X, Y ) that maps the con-
fidential data X and random noise Y of specified dimensionality into a sanitized
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copy of the database, denoted X̃ here to emphasize its relation to synthetic data.
Because of the way we constructed n from X, there is a completely equivalent
sanitizer m ← San (n, y) . Hence, any sanitizer can be used to construct a con-
ditional distribution Pr [m|n, San]. Thus, a discussion of sanitizers is equivalent
to a discussion of the conditional distribution constructed from those sanitizers,
and in the remainder of this paper, we will focus on conditional distributions,
without loss of generality.

3 Statistical Disclosure Limitation and Differential
Privacy

Consider a generic conditional distribution Pr [m|n], and represent the condi-
tional probabilities in a matrix Υ (k × k) . SDL methods focus on the rows of
Υ . For example, if Υ = I, then the release data are identical to the confidential
data. If

max (diag (Υ )) < 1− δ;

then, the release data differ from confidential data in every dimension by at least
δ. That is, for all i = 1, . . . k

Pr [mi �= ni|n, San] > δ

and the SDL is defined to have infused at least δ−percent uncertainty into
every tabulation. Acceptable levels of δ are usually an inverse function of ni.
Furthermore, the actual values of δ are usually kept secret.

By contrast, the computer science data privacy literature concerns itself with
the columns of Υ. To understand this formally, consider two copies of X , say
X(1) and X(2) that differ in a single row such that

∣∣n(1) − n(2)
∣∣ = 2. While

this condition looks obscure, it amounts to assuming that the two copies of the
database differ on a single attribute of a single row; hence, some ni changes from
0 to 1 while exactly one other nj changes from 1 to 0. Dwork et al. (2006) define
ε−differential privacy as the requirement that

max

∣∣∣∣∣ln
(

Pr
[
m|n(1)

]
Pr

[
m|n(2)

]
)∣∣∣∣∣ ≤ ε (3)

where the max is taken over ∀n(1), n(2) where
∣∣n(1) − n(2)

∣∣ = 2 and all columns of
Υ respecting the convention that the larger element is placed in the numerator.1

Thus, the computation of the ratios of elements of each column of Υ considers only
those combinations for the numerator and denominator that can be reached by
change of a single row of X. As an enhancement, Machanavajjhala et al. (2008)
define (ε, δ)−probabilistic differential privacy as the requirement that equation
(3) hold with probability 1− δ for ∀n(1), n(2) where

∣∣n(1) − n(2)
∣∣ = 2, where the

1 Dwork et al. (2006) actually call this ε−indistinguishability. Dwork (2006) standard-
izes the terminology to ε−differential privacy.
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probabilities are calculated with respect to the joint distribution of (m, n), given
α. They interpret probabilistic differential privacy as ε−differential privacy that
fails with probability δ, a rare event.

Conventional SDL methods and differential privacy definitions are related by
the concept of an inferential disclosure. An inferential disclosure occurs when
the attacker can infer the value of a variable for a row in the confidential data
by comparing the release data to the information available without the release
data (the attacker’s information set, or prior). The attacker’s prior knowledge is
summarized by the ratio

Pr
[
n = n(1)

]
Pr

[
n = n(2)

]
which measures the extent to which the attacker can ascertain the difference
between n(1) and n(2) without using the release data. The attacker’s gain in
information from having access to the synthetic release data m = m̃ is given
by the posterior odds ratio

Pr[n=n(1)|m̃]
Pr[n=n(2)|m̃]
Pr[n=n(1)]
Pr[n=n(2)]

. (4)

If the posterior odds ratio is large, then the release data contain a great deal of
information about the row associated with the change from n(1) and n(2). At
the limit, if this ratio is infinite, an inferential disclosure is certain. But it turns
out that

Pr[n=n(1)|m̃]
Pr[n=n(2)|m̃]
Pr[n=n(1)]
Pr[n=n(2)]

=
Pr

[
m = m̃|n(1)

]
Pr

[
m = m̃|n(2)

]
Hence, ε−differential privacy limits the maximum gain in information (poste-
rior odds) for an attacker who knows all properties of the disclosure limitation
procedure (Pr [m|n]) , and all rows of X save one, to

max

[
Pr

[
m = m̃|n(1)

]
Pr

[
m = m̃|n(2)

]
]

where the max is taken over ∀n(1), n(2) where
∣∣n(1) − n(2)

∣∣ = 2 and all columns
of Υ. Furthermore, (ε, δ)− probabilistic differential privacy limits the maximum
gain in information for an attacker with this information with probability 1− δ.

We can now answer the question posed in the title. Fully synthetic data, the
type we have discussed in this paper, are protective of the confidential data
to the extent that they limit inferences of the type defined by equation (4).
Hence, synthetic data that display ε−differential privacy are guaranteed to be
protective against an attacker with full information about the data protection
process (knowledge of α and n for Pr [m|n, MD] ; knowledge of ε but not n
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for Pr [m|n, Lap] ; knowledge of Pr [m|n, San], in general) and knowledge of all
but one row of X. Similarly, synthetic data that display (ε, δ)− probabilistic
differential privacy are protective against the same attacker with probability
1− δ.

Thus, synthetic data that have one of these differential privacy properties pro-
tect against an attacker with an enormous information set, certainly containing
more information than conventional SDL procedures assume. But, what of syn-
thetic data procedures that do not satisfy differential privacy? A sanitizer that
doesn’t satisfy either ε−differential privacy or (ε, δ)− probabilistic differential
privacy displays infinite differential privacy (ε →∞) for some kinds of attacks.
Virtually every SDL procedure in regular use–suppression, coarsening, swapping,
shuffling, sampling, and most noise-infusion techniques–fails to satisfy differen-
tial privacy. For this reason, the users of these methods normally safeguard the
parameters and conditioning information required to calculate Pr [m|n, San].
However, applying a differential privacy audit to synthesizers and sanitizers in
regular use can be very instructive about their strengths and limitations, as we
hope the examples below will demonstrate.

4 Applications

4.1 The Multinomial-Dirichlet Synthesizer

Figure 1 displays Pr [m|n, MD] a Multinomial-Dirichlet synthesizer that has
(2, 0.0006)−probabilistic differential privacy. The synthesizer displays the entire
sample space for n = 5, k = 2, α0 = 1.0, α1 = α2 = 0.5. There is no suppression
in the output; hence, every combination of actual data (rows) can produce any
possible outcome (columns). This synthesizer displays finite differential privacy,
as can be seen in Figure 2. It is the eight cells that have values in excess of 2 that
cause the failure of strict ε−differential privacy, and those cells have a combined
probability of 0.0006.

The properties displayed in Figure 1 are generic features of Multinomial-
Dirichlet synthesizers that satisfy finite differential privacy. Notice that the cells
that have the largest log posterior odds ratios are those in which the synthesizer
delivers “unusual” outcomes–outcomes that are far from the sample data. The

m1 0 1 2 3 4 5

n1

�����n2

m2
5 4 3 2 1 0

0 5 0.647228 0.294194 0.053490 0.004863 0.000221 0.000004
1 4 0.237305 0.395508 0.263672 0.087891 0.014648 0.000977
2 3 0.067544 0.241227 0.344610 0.246150 0.087911 0.012559
3 2 0.012559 0.087911 0.246150 0.344610 0.241227 0.067544
4 1 0.000977 0.014648 0.087891 0.263672 0.395508 0.237305
5 0 0.000004 0.000221 0.004863 0.053490 0.294194 0.647228

Fig. 1. Multinomial-Dirichlet synthesizer with (2,0.0006)-prob. differential privacy
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m1 0 1 2 3 4 5

n
(1)
1 n

(1)
2 n

(2)
1

�����n
(2)
2

m2
5 4 3 2 1 0

0 5 1 4 1.003353 0.295930 1.595212 2.894495 4.193778 5.493061
1 4 2 3 1.256572 0.494432 0.267708 1.029848 1.791988 2.554128
2 3 3 2 1.682361 1.009417 0.336472 0.336472 1.009417 1.682361
3 2 4 1 2.554128 1.791988 1.029848 0.267708 0.494432 1.256572
4 1 5 0 5.493061 4.193778 2.894495 1.595212 0.295930 1.003353

Fig. 2. Differential privacy values (log posterior odds ratios) for MD synthesizer

natural tendency is to set the synthesizer so that it suppresses these outcomes,
but that technique creates zeros in the rows of the transition matrix and, hence,
infinite differential privacy. For these cases, probabilistic differential privacy al-
lows the log posterior odds ratios to be large for exactly the low-probability
outcomes of the synthesizer.

4.2 The Laplace Sanitizer

Figure 3 displays Pr [m|n, Lap] for the same (5× 2) data matrix with the pa-
rameters of the Laplace distribution chosen to guarantee 2−differential privacy,
as in the example above. In order to make the comparison with the MD syn-
thesizer interesting, We have assumed that the total size of the database, n = 5
is known. Hence, the appropriate distribution for the noise is Lap (0, 2/ε) with
ε = 2 (see Dwork et al., page 8), but there is only one query being protected, not
two, since the total number of rows in the database is known. Figure 4 confirms
that the transition matrix guarantees 2−differential privacy.

The Laplace sanitizer displayed in Figure 3 is also typical. It displays larger
probabilities for the rare events than the MD synthesizer because it never allows
the log odds ratio to exceed 2. But, it is also more peaked around the high-
probability transitions, which is a feature of the double exponential noise used
in the sanitizer.

m1 0 1 2 3 4 5

n1

�����n2

m2
5 4 3 2 1 0

0 5 0.816060 0.159046 0.021525 0.002913 0.000394 0.000062
1 4 0.183940 0.632121 0.159046 0.021525 0.002913 0.000456
2 3 0.024894 0.159046 0.632121 0.159046 0.021525 0.003369
3 2 0.003369 0.021525 0.159046 0.632121 0.159046 0.024894
4 1 0.000456 0.002913 0.021525 0.159046 0.632121 0.183940
5 0 0.000062 0.000394 0.002913 0.021525 0.159046 0.816060

Fig. 3. Laplace synthesizer with 2-differential privacy
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m1 0 1 2 3 4 5

n
(1)
1 n

(1)
2 n

(2)
1

�����n
(2)
2

m2
5 4 3 2 1 0

0 5 1 4 1.489880 1.379885 2.000000 2.000000 2.000000 2.000000
1 4 2 3 2.000000 1.379885 1.379885 2.000000 2.000000 2.000000
2 3 3 2 2.000000 2.000000 1.379885 1.379885 2.000000 2.000000
3 2 4 1 2.000000 2.000000 2.000000 1.379885 1.379885 2.000000
4 1 5 0 2.000000 2.000000 2.000000 2.000000 1.379885 1.489880

Fig. 4. Differential privacy values (log posterior odds ratios) for Laplace sanitizer

5 Discussion

This short article is just meant to illustrate what is required to answer the ques-
tion “How protective are synthetic data?” and to provide some generic examples
for simple problems. The two articles upon which we have primarily relied con-
tain many more details of both procedures. In particular Machanavajjhala et al.
(2008) show that the real challenge for the MD synthesizer is to handle prob-
lems where the number of columns in the database is huge. Their example, an
origin-destination commuting pattern database, has 8.2 million rows. Both the
MD synthesizer and the Laplace sanitizer deliver poor analytical validity in this
example unless the domain is coarsened. The MD synthesizer gives poor results
without coarsening because the minimum prior sample size that must be spread
across the 8.2 million possible origins is usually much larger than the number
of sample individuals. The Laplace synthesizer also adds noise to each origin
and, while the properties of the Laplace noise do not depend upon the num-
ber of potential origins (8.2 million), if the release data are provided for each
origin, the total amount of noise in the release data is comparable to the M-D
synthesizer.

Coarsening the domain can be difficult since all feasible outcomes must have
positive transition probabilities for every row of the input database in order
to preserve either type of differential privacy. Machanavajjhala et al. (2008)
address this problem by combining distance-based coarsening with a probabilis-
tic pruning algorithm. When used in combination, the analytical properties of
the data can be preserved with a (4, 0.0001)−probabilistic differential privacy
(Machanavajjhala et al., 2008, page 9).

Dwork et al. (2006) consider an equally difficult problem–all possible ta-
bles from a census of population. Barak et al. (2008) show how to guarantee
ε−differential privacy by coarsening this problem via a restatement in the Fourier
basis, where far fewer free coefficients are required to guarantee privacy.

There are many unsolved problems in the application of formal privacy models
and SDL to fully synthetic data. This article illustrates the common ground in
the two methodologies and points out ways to implement the procedures in
complex data models.
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Auditing Categorical SUM, MAX and MIN Queries 
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Abstract. Auditing consists in logging answered queries and checking, each 
time that a new query is submitted, that no sensitive information is disclosed by 
combining responses to answered queries with the response to the current 
query. Such a method for controlling data disclosure naturally raises the follow-
ing inference problem: Given a set Q of answered queries and a query q, is the 
information asked by q determined by responses to queries in Q? We solve this 
inference problem for sum-queries (of real type and nonnegative real type), 
max-queries and min-queries and provide tests running in polynomial time. To 
achieve this, we introduce an inference model which, unlike previous inference 
models, is sound and complete in that the answer to the question of the infer-
ence problem comes out to be affirmative if and only if the information asked 
by q coincides exactly with the value of q determined by Q.  

Keywords: Aggregate function, sum-query, max-query, min-query, null values. 

1   Introduction 

A statistical database is a collection of individual data about which queries concern-
ing values of aggregate functions for certain subsets of the individual data may be 
answered without revealing confidential information contained in the individual data. 
An example is a database allowing SUM, MAX and MIN queries. For instance, we 
may have a file of employees with fields NAME, GENDER, DEGREE, SALARY sup-
porting queries of the form ‘give me the sum of salaries of all employees whose gen-
der and degree satisfy a certain selection criterion”. What measures suffice to protect 
the confidentiality of the salary information? This suggests an obvious security prob-
lem: how to prevent the exact or approximate disclosure of confidential data from the 
answers to aggregate queries. This is the statistical disclosure problem and many 
different approaches have been proposed for dealing with this problem. Examples 
include perturbation of the database itself, perturbation of query answers and query 
restriction. Yet another approach is to audit the queries in order to determine when 
enough information has been given out so that compromise becomes possible and we 
focus on this approach. In the standard statement of the auditing problem, it is as-
sumed that: (1) there is one confidential field, say A (SALARY, in the example above) 
and (2) the set of individual records with the A-fields removed is publicly available. 
Then, for each individual record r, a variable xr is introduced for the value of A in r, 
and each answered query is translated into an equation such as  xr

r∈S
∑ = a , 
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Max
r∈S

 xr = a  or Min
r∈S

 xr = a  where S is the set of records that satisfy the selection 

criterion of the query and a is the corresponding value of the aggregate function. At 
this point, the problem is to check whether or not some variable xr has the same value 
for every solution of the resultant equation system.  

The standard formulation has two limitations: (i) the number of variables to intro-
duce is equal to the size of the database which might contain a huge number of re-
cords, and (ii) even if the value of A in a record r is not determined by the equation 
system, it could be disclosed by a user coalition having a prior knowledge of the  
values of A in a set of records S*; this happens with SUM queries if the  
sum-expression

  
∑

r∈S *∪{r}
xr   has a unique feasible value, with MAX queries if  

the max-expression
    

Max
r∈S *∪{r}

 xr  has a unique feasible value and this is greater than 

the maximun of A in S*, and with MIN queries if the min-expression 
  

Min
r∈S *∪{r}

 xr  has 

a unique feasible value and this is less than the minimum of A in S*.  
In order to overcome the limitations above, some authors [11] suggested an alter-

native approach to the auditing problem for SUM queries, in which assumption (2) of 
the standard formulation is relaxed (so that the problem comes out to be independent 
of the size of the database). To achieve this, the notions of “elementary categories” 
and “categories” are introduced. An elementary category or a cell is a logically possi-
ble combination of values of category attributes (GENDER and DEGREE, in the example 
above); for instance, (GENDER = Male, DIVISION = Gynecology) is not a cell. A 
category is a nonempty set of cells.   

Initially, for each cell ω, the set of records R(ω) whose category descriptions match 
ω is determined; if R(ω) = Ø, then ω is called a null cell. Analogously, a category C is 
called a null category if it consists of null cells only. Moreover, a nonnull category C 
is recognized as being a sensitive target if the distribution of A over the record set 
R(C) = ∪ω∈C R(ω) satisfies some pre-fixed sensitivity criterion (e.g., threshold crite-
rion or concentration criterion et cetera). During the interrogation of the statistical 
database, the selection criterion of every query is evaluated to a (possibly null) cate-
gory, which is called the characteristic category of the query [13]. For instance, in the 
example above, the cell set is reported in the following table 
 

GENDER DEGREE 

Male High-school 
Male Bachelor 
Male Ph.D. 

Female High-school 
Female Bachelor 
Female Ph.D. 

 

If the selection criterion of a query is GENDER = Female & DEGREE • High-
school, then the characteristic category of the query is 
 

GENDER DEGREE 

Female Bachelor 
Female Ph.D. 
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Given a SUM query with characteristic category C, say sum(C, A), the response to 
the query is the sum of values of A over R(C), which is denoted by SUM(C, A). In 
order to model the amount of information conveyed by the responses to answered 
queries, an equation system is constructed as follows. For each cell ω, a variable xω is 
introduced to model the information released about the value at ω, and each answered 
query sum(C, A) is translated into an equation such as 

  
 xω

ω ∈C
∑ = a , where a = SUM(C, 

A). The problem is then to check for each sensitive target whether or not the corre-
sponding value is uniquely determined by the equation system. 

In this paper we extend this framework to MAX and MIN queries such as max(C, A) 
and min(C, A), for which again we can build up a system of equations such as 

    
Max
ω∈C

xω = a  or 
  

Min
ω∈C

xω = a  using the additivity of the MAX and MIN aggregate func-

tions in order to decide whether or not a sensitive target is protected or unprotected 
after answering a set of queries. It should be noted that, if xω is a variable featured by 
the equation system, then the cell ω need not be nonnull; therefore, xω takes on not 
only numeric values (corresponding to the case that ω is a nonnull cell) but also a 
conventional non-numeric value for the case that is a null cell. This conventional 
value is called null value in database systems. We introduce a special symbol for the 
null value, which we call nil and denote by �. Accordingly, the responses to queries 
sum(C, A), max(C, A) and min(C, A) are defined as follows: 

    

SUM(C,  A) =  
 rA

r∈R(C)
∑   if C is a nonnull category

�   else

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

 

    

MAX(C, A) =  
Max

r∈R(C)
 rA   if C is a nonnnull category

�   else

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
  

    

MIN(C, A) =  
Min

r∈R(C)
 rA   if C is a nonnnull category

�   else

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

At this point, in order to restore the additivity of the three aggregation functions, 
we add the following algebraic rules: 

a+� = �+a = a      max(a, �) = max(�, a) = a  min(a, �) = min(�, a) = a 

which entail that nil behaves like zero with respect to +, like –∞ with respect to max 
and +∞ with respect to min. Thus, if C1 and C2 are two disjoint categories, then we 
always have 

 SUM(C1∪C2, A) = SUM(C1, A) + SUM(C2, A)    
 MAX(C1∪C2, A) = max (MAX(C1, A), MAX(C2, A))   
 MIN(C1∪C2, A) = min (MIN(C1, A), MIN(C2, A))    

Using the algebraic rules above, we state a general criterion for the value of query q 
to be determined by answers to queries in Q. Finally, we explicitly solve the inference 
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problems for sum-queries of real type, for sum-queries of nonnegative-real type, for 
max-queries and for min-queries by providing tests that run in polynomial time.   

Related Work. (The inference problem) Previous inference models for sum-queries [3, 
4, 5, 9, 10, 11, 12, 13, 14] and for max-queries and min-queries [3, 7] are not sound 
because they do not allow for null values. Moreover, for max-queries and min-
queries, in [3, 7] the authors make use of an information model that requires the 
knowledge not only of responses to answered queries but also of the underlying data-
base, and in [3] the author assumes that the values of the aggregation variable are all 
distinct. (Null values). To the best of our knowledge, null values have never been 
dealt with in a systematic way even if they make an appearance in [2].   

The paper is organized as follows. Section 2 contains the formal statement of our 
inference problem. In Section 3 we introduce an equation system, called the “base 
system”, which models the information content of responses to answered queries, and 
state a general inference criterion. In section 4, we prove that the inference problem 
can be solved in polynomial time for sum-queries of real type or of nonnegative real 
type. In section 5, we prove that the inference problem can be solved in polynomial 
time for max-queries and the same holds for min-queries. Section 6 contains a closing 
remark. Note that, for shortness, all proofs are omitted.  

2   The Inference Problem 

A query q on a database R will be denoted by f(C, A), where f stands for sum, max or 
min and C is the characteristic category of q. By q(R) we denote the value of q on R, 
that is, the response to q if q is answered. Note that q(R) = � if and only if C is a null 
category. A system of queries on R is a set of queries Q = {q1, …, qn} all with the 
same aggregation function and with the same aggregation variable. By Q(R) we de-
note the function that maps each query qi in Q to its value qi(R) (1 ≤ i ≤ n). We may 
view Q(R) as an abstract representation (or a coding) of R and, typically, the function 
that maps R to Q(R) is not invertible because there exist (infinitely) many databases R′ 
for which Q(R′) = Q(R). If Q(R′) = Q(R), we say that R and R′ are equivalent modulo 
Q. Thus, Q(R) is a unique representation of the class of databases equivalent to R 
modulo Q. Finally, let q be any query with same aggregation function and with the 
same aggregation variable as Q and assume we are given Q(R) but not q(R). Since 
Q(R) is a unique representation of the class of databases equivalent to R modulo Q, 
knowing Q(R) always allows to determine the set of values of q on databases that are 
equivalent to R modulo Q, each of which can be taken to be a feasible value of q 
given Q(R). Of course, q(R) is itself a feasible value of q given Q(R). Finally, we say 
that the value of q on R is determined by Q(R) if there is exactly one feasible value of 
q given Q(R), which then must equal q(R).  

3   The Information Model 

Let Q be a system of queries on a database R. We now introduce an equation system 
to model the amount of information conveyed by Q(R).  
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3.1   The Base System 

Let Q = {q1, …, qN}, where qi = f(Ci, A) (1 ≤ i ≤ N), and let Ω = {ω1, …, ωM} be the 

set of cells. First of all, we reduce Q and Ω as follows. For each i, 1 ≤ i ≤ N, if qi(R) = 
� (that is, Ci is a null category) then we delete qi from Q and delete each ωj ∈ C from 

Ω. Let Q = {q1, …, qn}, n ≤ N, and Ω = {ω1, …, ωm}, m ≤ M, be the result of the 

reduction. For any category C, the support of C is the (possibly empty) set J = {j: ωj ∈ 

C}. Accordingly, if Ji is the support of Ci (1 ≤ i ≤ n), then one has Ci = {ωj : j ∈ Ji}. 

Let D be the value-set of A and let D
�

 = D∪{�}. For each j (1 ≤ j ≤ m), we introduce 
a D

�
-valued variable xj which stands for the value of the query f({ωj}, A) on R. By 

the additivity of the aggregate function f, the variables xj are subject to a system of n 
equations with constant terms q1(R), …, qn(R), which we write:  

  
Θ

j ∈Ji

x j = qi(R)   (1 ≤ i ≤ n) 

and call the base system of Q(R). Here, Θ
j ∈Ji

x j  means x j
j ∈Ji

∑  or Max
j ∈Ji

x j  or Min
j ∈Ji

x j  

depending on whether f is sum, max or min respectively.   

Fact 1. A D
�

-valued m-tuple a = (a1, …, am) is a solution of the base system of Q(R) 

if and only if there exists a database R′ equivalent to R modulo Q such that aj is the 
value of the query f({ωj}, A) on R′ (1 ≤ j ≤ m).  

Consider a query q = f(C, A) and let J be the support of C. If J = Ø, then C is a null 
category and q(R) is equal to nil. Henceforth, we always limit our considerations to 
the case that J ≠ Ø. With C we associate the expression Θ

j ∈J
x j  and we call an element 

v of D
�

 a feasible value of this expression if there exists a solution a = (a1, …, am) of 
the base system for which  

Θ
j ∈J

a j  =  v. 

Moreover, the expression associated with C is an invariant of the base system of Q(R) 
if it has exactly one feasible value, which will be referred to as the value of the invari-
ant. Note that, by Fact 1, the feasible values of the expression associated with C are all 
and the only values of the query q on databases equivalent to R modulo Q. Therefore, 
the following holds. 

3.2   Inference Criterion 

Let Q∪{q} be a system of queries on a database R. We shall state an algebraic crite-
rion for the value of q on R to be determined by Q(R). Let q = f(C, A) and let J be the 
support of C.  

Theorem 1. Let Q∪{q} be a system of queries on database R. The value of q is de-
termined by Q(R) if and only if the expression associated with the characteristic cate-
gory of q is an invariant of the reduced base system of Q(R). 



252 F.M. Malvestuto 

In the next two sections, we shall apply Theorem 1 to sum-queries and max-queries to 
derive polynomial tests for recognizing queries whose values are determined by Q(R).  

4   Sum-Queries 

In this section we deal with sum-queries of real type and of nonnegative real type. In both 
cases we provide a polynomial test to decide whether the value of the query q is deter-
mined by Q(R). We discuss the two cases separately in the following two subsections. 

4.1   Sum-Queries of Real Type 

Consider the following equation system that is obtained from the base system of Q(R) 
by restricting the range of each variable to ℜ:  

x j
j ∈Ji

∑ = qi(R)  (1 ≤ i ≤ n) ,    with xj ∈ ℜ .  (1) 

Note that a sum-expression that is an invariant of the base system is also an invariant 
of system (1); however, the converse need not hold if the sum-expression is a zero-
invariant of system (1). The following states a necessary and sufficient condition for a 
sum-expression to be an invariant of the base system.   

Theorem 2. Let Q∪{q} be a system of sum-queries on database R, and let J be the 
support of the characteristic category of q. The value of q is determined by Q(R) if 
and only if 

(a) the sum-expression 
  

x j
j∈J
∑   is an invariant of system (1), and   

(b) if it is a zero-invariant of system (1), then   
(b1)  there exists no solution a of system (1) with aj = 0 for j ∈ J, or 

  (b2) there exists i such that Ji is a subset of J. 

If this is the case, then the value of q is given by the value of the invariant
  

x j
j∈J
∑  of 

system (1). 

Remark 2. Condition (b) distinguishes between the case that null values are allowed 
and the case that they are not [12].  

From a computational point of view, conditions (a) and (b1) can be tested in polyno-
mial time using standard methods of linear algebra [12]; moreover, it is easy to see 
that condition (b2) can also be tested in polynomial time.  

Example 1. Let R be a statistical database whose records have two category fields 
GENDER, DEGREE and one data field SCORE. The value-sets of GENDER and 
DEGREE are {Male, Female} and {High-school, Bachelor, Ph.D.}, respec-
tively. The cell set is reported in the Introduction. Assume that the data field SCORE 
is an ℜ-valued variable. Consider the system Q = {q1, q2, q3} of sum queries, where 
qi = sum(Ci, SCORE), 1 ≤ i ≤ 3, and  
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 C1 = {(Male, High-school), (Male, Bachelor), (Female, High-  
  school), (Female, Bachelor)} 
 C2 = {(Male, High-school), (Male, Ph.D.), (Female, High-school), 
  (Female, Ph.D.)} 
 C3 = {(Male, Ph.D.), (Female, Ph.D.)}. 

The supports of C1, C2 and C3 are J1 = {1, 2, 4, 5}, J2 = {1, 3, 4, 6} and J3 = {3, 6}, 
respectively. Assume that q1(R) = 2 and q2(R) = q3(R) = 1. Thus, system (1) reads  

    

x1 + x2 + x4 + x5 =  2

x1 + x3 + x4 + x6 =  1

x3 + x6 =  1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

    

where x1 , …, x6 are ℜ-valued variables.  
Consider now the sum-query q = sum(C, SCORE) where 

 C = {(Male, High-school), (Male, Bachelor), (Female, Bachelor)} 

The support of C is J = {1, 2, 5} and the sum-expression associated with C is x1 + x2 
+ x5. The general solution of system (1) is (α, β, γ, –α, 2–β, 1–γ), where α, β and γ are 
arbitrary real numbers. Therefore, the feasible values of q are α+2 where α is any 
element of ℜ. By Theorem 2, the value of q is not determined by Q(R).                     � 

4.2   Sum-Queries of Nonnegative Real Type 

Consider the following equation system that is obtained from the base system of Q(R) 
by restricting the range of each variable to ℜ+:  

x j
j ∈Ji

∑ = qi(R)  (1 ≤ i ≤ n),    with xj ∈ ℜ+  .  (2) 

Again, a sum-expression that is an invariant of the (reduced) base system is also an 
invariant of system (2); however, the converse need not hold if the sum-expression is 
a zero-invariant of system (2).  

Theorem 3. Let Q∪{q} be a system of sum-queries on database R, and let J be the 
support of the characteristic category of q. The value of q is determined by Q(R) if 
and only if 

(a) the sum-expression 
  

x j
j∈J
∑   is an invariant of system (2), and   

 (b) if 
  

x j
j∈J
∑  is a zero-invariant of system (2), then there exists i such that Ji is a 

subset of J. 

If this is the case, then q(R) is given by the value of the invariant
 

x j
j∈J
∑  of system (2). 
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Remark 3. Condition (b) distinguishes between the case that null values are allowed 
and the case that they are not [11, 12].  

From a computational point of view, note that the invariance as well as the zero-
invariance of a sum-expression can be tested in polynomial time [11, 12]; therefore, 
conditions (a) and (b) can be tested in polynomial time.  

Example 2. Consider the same database R, the same query system Q and same query q 
as in Example 1, but assume that the data field SCORE is a variable of nonnegative 
type. Then, the general solution of system (2) is (0, β, γ, 0, 2–β, 1–γ) with 0 ≤ β ≤ 2 
and 0 ≤ γ ≤ 1. Therefore, the sum-expression x1 + x2 + x5 associated with the charac-
teristic category of q is an invariant with value 2. By Theorem 2, the value of q is 
determined by Q(R) and q(R) = 2.                                                                                 � 

5   Max-Queries 

In this section we consider max-queries and state a polynomial test, which mutatis 
mutandis applies to min-queries too.  

Let ≤ denote the linear ordering of ℜ. The operation max induces an extension of ≤ 
to ℜ

�
, denoted by ≤max, defined as follows: 

a ≤max b if max(a, b) = b 

Note that for every two real numbers a and b one has a ≤max b if and only if a ≤ b, 
and for every element a of ℜ

�
 one has � ≤max a.  

The base system reads: 

  
 

Max
j ∈Ji

x j =  qi(r) (1 ≤ i ≤ n)   (3) 

First of all, note that the i-th equation requires that xj ≤max qi(R) for each j ∈ Ji in 
that for every feasible value v of xj one has v ≤max qi(R). More in general, for each j 

let Ij = {i: j ∈ Ji} and let uj be the real number defined as follows 

 
    
u j = Min

i∈I j

qi(R)  

Since xj ≤max qi(R) for each j ∈ Ji one also has xj ≤max uj for all j. Moreover, it is 
easy to see that the m-tuple u = (u1, …, um) is a solution of the base system. In order 
to obtain an invariance test for a max-expression such as 

 
Max
j ∈J

 x j  we need some 

further notions. 
Let upper(J) = Max

j ∈J
u j . Since u = (u1, …, um) is a solution of the base system and 

xj ≤max uj for all j, one has that upper(J) is a feasible value of the max-expression 

Max
j ∈J

x j  and that Max
j ∈J

x j  ≤max upper(J). Let top(J) = {j ∈ J: uj = upper(J)} and 

top(Ji) = {j ∈ Ji: uj = qi(R)}. Trivially, upper(J) =
 
Max

j ∈ top(J)
u j ; therefore, if 
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top(J)∩top(Ji) ≠ Ø, then upper(J) = qi(R) so that Max
j ∈J

x j  ≤max upper(J) = qi(R); if in 

addition one has top(Ji) ⊆ top(J), then qi(R) ≤max 
  

Max
j∈ top(J )

x j  ≤max Max
j ∈J

x j  ≤max 

qi(R) and, hence, Max
j ∈J

x j  = qi(R). So, the following holds.      

Theorem 4. Let Q∪{q} be a system of max-queries on database R, and let J be the 
support of the characteristic category of q. The value of q is determined by Q(R) if 
and only if there exists i such that top(Ji) ⊆ top(J). If this is the case, then q(R) = 
qi(R).  

Of course, the inference criterion given by Theorem 4 can be tested in polynomial 
time.  

Example 3. Consider the same set Q ∪ {q} as in Example 1 with q1(R) = 2 and q2(R) 
= q3(R) = 1, but now the four queries are all max-queries. Recall that J1 = {1, 2, 4, 5}, 
J2 = {1, 3, 4, 6}, J3 = {3, 6} and J = {1, 2, 5}. The base system of Q(R) reads  

    

max(x1, x2, x4, x5) =  2

max( x1, x3, x4, x6)  =  1

max(x3, x6)  =  1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 Here, one has u1 = u3 = u4 = u6 = 1, u2 = u5 = 2 and top(J1) = {2, 5}, top(J2) = J2, 
top(J3) = J3. Moreover, upper(J) = 2 and top(J) = {2, 5}. Since  top(J1) = top(J), by 
Theorem 4 the value of q is determined by Q(R) and q(R) = q1(R) (= 2).                    � 

Example 4. Consider the same system Q ∪ {q} as in Example 3 but with q1(R) = 
q2(R) = q3(R) = 0. The base system of Q(R) reads  

    

max(x1, x2, x4, x5) =  0

max( x1, x3, x4, x6)  =  0

max(x3, x6)  =  0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 Here, one has u1 = u2 = u3 = u4 = u5 = u6 = 0; moreover, top(Ji) = Ji (1 ≤ i ≤ 3). 

Since, upper(J) = 0 and top(J) = J, one has that top(Ji) ⊆ top(J) for no i so that, by 
Theorem 4, the value of q is not determined by Q(R). Actually, the feasible values of 
q range from � to 0.                                                                                                      � 

6   Closing Note 

Given the list of sensitive targets for the pair (f, A), where f is either sum or max or 
min and A is a confidential data field, and a current query q = f(C, A), auditing con-
sists in checking that the value of no sensitive target can be inferred from responses to 
previously answered queries and the response to q. We have solved this inference 
problem by auditing only answered queries of the same type as q and considering 
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only max-queries, min-queries and sum-queries of real type and of nonnegative real 
type. For sum-queries of nonnegative integral type and, hence, for count-queries, the 
inference problem encounters the same computational difficulties as linear integer 
programming problems. A direction for future research is the inference problem by 
relaxing the assumption that answered queries to audit are of the same type as the 
current query.  
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Abstract. We propose a Bayesian approach to reasoning under uncer-
tainty in on-line auditing of Statistical Databases. A Bayesian network
addresses disclosures based on probabilistic inferences that can be drawn
from released data. In particular, we deal with on-line max and min au-
diting. Moreover, we show how our model is able to deal with the implicit
delivery of information that derives from denying the answer to a query
and to manage user prior-knowledge.

1 Introduction

A Statistical Database (SDB) is a database system that enables its users to
retrieve only aggregate statistics (e.g., mean, max, min and count) for a subset
of the entities represented in the database. Consider, for example, a company
database containing salaries of employees. A user may want to determine the
max or a min salary of the employees in a subset of records in the database.
He/she cannot, however, be allowed to glean the salary of any one employee in
particular.

In our paper, we propose a Bayesian network (BN) as a disclosure control tool
in SDB, based on probabilistic inferences that can be drawn from released data.

Several methods for protecting privacy in SDBs have been suggested in the
literature; see reference [1] for a survey. These methods can be classified under
four general approaches: conceptual, data perturbation, output perturbation and
query restriction. We focus on the query restriction approach, which prevents
malicious inferences by denying some unsafe queries. In particular, we deal with
the on-line auditing problem [4]-[7]-[8]-[9]-[10]. With on-line auditing, queries are
answered one by one in sequence and the auditor has to determine whether the
SDB is compromised when answering a new query. In references [2] and [3], we
have introduced a Bayesian approach for on-line max and min auditing and we
have shown, by means examples, how the model is able to capture user prior-
knowledge. In this paper, we optimize the previous model and add the following
original contribution:

1. we consider the case in which denial leaks information;
2. we model the case in which the probability distribution of the sensitive field

is known;
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3. we provide the results of a preliminary set of experimental trials aimed at
assessing the scalability of the approach in terms of response time, size of
the conditional probability table, and probability of denial.

The paper is organized as follows: Section 2 places our work in the context
of previous research; Section 3 introduces notions and definitions useful in the
sequel of the work; Section 4 presents the Bayesian approach for on-line max and
min auditing; Section 5 discusses the experiments; Section 6 provides conclusion
and future work.

2 Related Work

On-line auditing is first studied in references [5] and [13]; these query monitoring
approaches completely ignore the answers to the queries and monitor the logs of
all the queries.

Reference [4] considers the online sum, max, and mixed sum/max auditing
problems. Both the online sum and the online max problem are shown to have
efficient auditing algorithms. However, the mixed sum/max problem is shown to
be NP-hard. Reference [8] considers the auditing problem for sum queries where
the private attribute values are boolean.

Reference [9] focuses on sum-queries with response variable of nonnegative real
type, and proposes a compact representation of answered sum-queries, called an
information model in “normal form”, which allows the query system to decide
whether the value of a new sum-query can, or cannot, be safely released.

Reference [7] studies the problem of simulatable auditing; the authors pro-
pose an approach that considers the implicit delivery of information that derives
from denying the answer to a query. They demonstrate that max queries can
be audited in a simulatable paradigm under the classical definition of privacy
where a breach occurs if a sensitive value is fully compromised. Moreover, max
auditing under a probabilistic definition of privacy is considered in the case that
the sensitive values are taken uniformly at random from the set of duplicate free
points in a real interval. The same limitations are present in the on-line max
and min auditing both under the classical definition of privacy and under the
probabilistic one [10].

In references [2] and [3], a Bayesian approach for on-line max and min auditing
is introduced and the “no duplicates” assumption is removed.

3 Preliminaries

We assume that:

– T is a table with n records;
– K = {1, 2, ..., n};
– X and Y are two fields of T such that the elements of X represented by xi,

with i ∈ K, are distinct among them (each xi identifies uniquely a subject)
and the elements of Y , represented by yi, are real numbers;
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– the sensitive field Y has r distinct values (r ≤ n);
– the private information takes the form of an association, (xi, yi) ⊆ X × Y ,

that is a pair of values in the same tuple;
– a l-query q is a subset of K, that is q = {i1, ...il} ⊆ K. Let us assume that

ij < ij+1 ∀j ∈ {1, ..., l − 1}. In this paper, we use the terms query and
l-query interchangeably;

– the answer corresponding to a max query q is equal to max{yij |ij ∈ q};
– the answer corresponding to a min query q is equal to min{yij |ij ∈ q};
– m is the answer to a max or a min query;
– l = |q| > 1, because if q = {j}, clearly, yj is breached irrespective of the

value of m and the association (xj , m) is disclosed.

References [8] and [10] define, for each element yj , with j ∈ K, the upper bound
µj as follows:

Definition 1. ∀yj , µj = min{mk|j ∈ qk with qk a max query and mk the
answer} is the minimum over the answers to the max queries containing j.

In other words, µj is the best possible upper bound for yj that can be obtained
from the answers to the max queries. Similarly, the lower bound λj is defined as
follows:

Definition 2. ∀yj , λj = max{mk|j ∈ qk with qk a min query and mk the
answer} is the maximum over the answers to the min queries containing j.

Moreover, we consider the following definition of probabilistic compromise [2],[3]:

Definition 3. A privacy breach occurs if and only if a private association is
disclosed with probability greater or equal to a given tolerance probability tol. If
a private association is disclosed with tol = 1, then the SDB is fully compromised.

4 Bayesian Approach for On-Line Max and Min Auditing

Given a set of max and min queries {q1, q2, ..., qt−1}, the corresponding answers
{m1, m2, ..., mt−1} and the current query qt, the auditor has to decide if to deny
qt or to answer otherwise. Obviously if an auditor always denies, the privacy is
never breached, but the user has no utility from the SDB. In this section we
present a Bayesian approach to support auditor decisions. In our approach, a
query is denied not only if the privacy is breached (see Definition 3), because an
user can learns something also from a denial.

This section is organized as follows: Section 4.1 presents the probabilistic
approach; Section 4.2 discusses how to represent in an efficient way a single max
or min query, by means a BN; Section 4.3 presents the overall Bayesian approach
for on-line max and min auditing; Section 4.4 shows how the model deals with
the implicit delivery of information deriving from denial; Section 4.5 shows how
the model is able to capture additional user knowledge about the probability
distribution of the sensitive field.
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4.1 Probabilistic Approach

In this section, we present a probabilistic approach to deal with max queries; the
min case is analogous. Let q = {i1, ..., il} be a l -query and m = max{yi1 , ..., yil

}
be the corresponding answer, if the auditor gives the answer m then the user
knows that:

yij ≤ m ∀ij ∈ q (1)

∃k ∈ {1, ..., l}|yik
= m. (2)

Moreover, we assume that the user has no knowledge about the probability
distribution of the sensitive field. Because of this, we have the following prior
probabilities:

P (yij < m) = P (yij = m) =
1
2

∀ij ∈ q. (3)

The following propositions compute the posterior probability that yj is equal
to m, for each j ∈ q, and determine the probabilistic dependencies among the
sensitive values in q.

Proposition 1. Let q = {i1, ..., il} ⊆ K, then, ∀j ∈ q, the following posterior
probabilities hold:

P (yj = m|max{yi1 , ..., yil
} = m) =

2l−1

2l − 1
(4)

P (yj < m|max{yi1 , ..., yil
} = m) =

2l−1 − 1
2l − 1

. (5)

Example 1. Let q = {1, 3} be a max query with answer m = 8, if the auditor
provides the answer then the user knows that it is verified one of the following
cases: y1 = 8 and y3 = 8; y1 < 8 and y3 = 8; y1 = 8 and y3 < 8. Therefore, the
user knows: P (yj = 8|m = 8) = 2

3 and P (yj < 8|m = 8) = 1
3 , ∀j ∈ q.

Proposition 2. Given q = {i1, ..., il} such that mq = max{yi1 , ..., yil
} = m,

given q′ ⊂ q , with l′ = |q′| > 0 such that mq′ = max{ys|s ∈ q′} = m, then,
∀j ∈ q \ q′:

P (yj = m|mq = m, mq′ = m) = P (yj < m|mq = m, mq′ = m) =
1
2
.

Example 2. Given q = {1, 2, 3, 4, 5} and mq = max{y1, ..., y5} = m, then if the
user knows that mq′ = max{y4, y5} = m then P (yj = m|mq = m, mq′ = m) =
1
2 , for j = 1, 2, 3.

Proposition 3. Given q = {i1, ..., il} such that mq = max{yi1 , ..., yil
} = m,

given q′′ ⊂ q , with l′′ = |q′′| > 0 such that mq′′ = max{ys|s ∈ q′′} < m, then,
∀j ∈ q \ q′′:

P (yj = m|mq = m, mq′′ < m) =
2(l−l′′)−1

2l−l′′ − 1

P (yj < m|mq = m, mq′′ < m) =
2(l−l′′)−1 − 1

2l−l′′ − 1
.
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Example 3. Let q = {1, 2, 3, 4, 5}, if the user knows that mq = max{y1, ..., y5} =
m and mq′′ = max{y2, y3, y4} < m, then P (yj = m|mq = m, mq′′ < m) = 2

3 ,
for j = 1, 5. Instead, if mq′′ = max{y1, y2, y3, y4} < m then P (y5 = m|mq =
m, mq′′ < m) = 1.

4.2 Bayesian Networks and Temporal Transformation

In this section, we present a Bayesian network (BN) able to represent, in efficient
way, user uncertain knowledge after a max or min query; this BN computes all
the probabilities and dependencies among variables described in Section 4.1.

A BN is a probabilistic graphical model that represents a set of variables and
their probabilistic dependencies [12]. A BN, also called belief net, is a directed
acyclic graph (DAG) which consists of nodes to represent variables and arcs to
represent dependencies between variables. Arcs, or links, also represent causal
influences among the variables. The strength of an influence between variables
is represented by the conditional probabilities which are summarized in a condi-
tional probability table (CPT). If there is an arc from node A to another node
B, A is called a parent of B, and B is a child of A. The set of parent nodes of a
node Xi is denoted parents(Xi). The size of the CPT of a node Xi depends on
the number s of its states, the number n of parents(Xi), and the number sj of
parent states, in the following way:

size(CPT ) = s ·
n∏

j=1

sj . (6)

For every possible combination of parent states, there is an entry listed in the
CPT. Notice that for a large number of parents the CPT will expand drastically.
If node Xi has no parents, its local probability distribution is said to be uncon-
ditional, otherwise it is conditional. If the value of a node is observed, then the
node is said to be an evidence node.

Independence of causal influence (ICI) [14] among local parent-child or cause-
effect relationship allows for further factoring. ICI has been used to reduce the
complexity of knowledge acquisition. The size of conditional distribution that
encodes the max (or min) operator can be reduced when the n-ary max (resp.
min) operator is decomposed into a set of binary max (resp. min) operators.
Two well known approaches to the decomposition are: parent divorcing [11] and
temporal transformation [6]. Parent divorcing constructs a binary tree in which
each node encodes a binary operator. Temporal transformation constructs a
linear decomposition tree in which each node encodes a binary operator. In this
section, we present a temporal transformation to encode a max query, the min
case is analogous. Consider the following example:

Example 4. Let q = {1, 2, 3} be a max query, then the 3-query is decomposed
into a set of binary max queries by means of a temporal transformation as shown
in Fig. 1.
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Fig. 1. Temporal transformation for a max 3-query

Given a max query q = {i1, ..., il} with answer m, for each yj with j ∈ q, we have
to represent the posterior probabilities in equation (4) and (5) of Proposition 1.
Therefore, each node in the BN will have two states: r1 is the first state and encodes
the case in which the corresponding variable is less than m and r2, the second state,
encodes the case in which the variable is equal to m. As a consequence:

– the CPT for a node encoding a sensitive variable yj has size equal to 2 and,
assuming that the user has not knowledge about the domain of the sensitive
field, the prior distribution is (1

2 , 1
2 );

– because a node encoding a binary max query has two parents, then its CPT
has size equal to 23 = 8.

Because there are l nodes encoding the sensitive variables and l− 1 binary max
nodes, then the total CPT for the BN grows linearly with the size of the query:

totalCPTsize = (l − 1)23 + 2l = 8(l− 1) + 2l = 10l− 8. (7)

Example 5. Let q be the max query in Example 4 and m = 8 its answer, then
in order to compute the posterior probabilities in (4) and in (5) of Proposition
1, we insert evidence on node encoding q as shown in Fig. 2 a).

If the user knows that max{y1, y2} = 8, inserting evidence on the correspond-
ing binary max node as in Fig. 2 b), we compute, for y1 and y2, the probabilities
given by (4) and (5), and, for y3, the probabilities given by Proposition 2.

If the user knows that max{y1, y2} < 8, inserting evidence on the correspond-
ing binary max node as in Fig. 2 c), we compute, for y3, the probabilities given
by Proposition 3.

Finally, if the user knows that y3 < 8, inserting evidence on the corresponding
node as in Fig. 2 d), we compute, for y1 and y2, the probabilities given by
Proposition 3.

4.3 On-Line Max and Min Auditing

We build the BN for the on-line max and min auditing problem at run-time,
that is we execute a temporal transformation after each max or min user query
and decide whether or not to answer the query. From now on, we assume that:
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a) b)

c) d)

Fig. 2. Temporal transformation for a max 3-query. a) ∀j ∈ {1, 2, 3}, P (yj = 8|m =
8) = 4

7 . b) P (y3 = 8|m = 8, max{y1, y2} = 8) = 1
2 . c) P (y3 = 8|m = 8, max{y1, y2} <

8) = 1. d) ∀j ∈ {1, 2} P (yj = 8|m = 8, y3 < 8) = 2
3 .

– Z = {z1, ..., zn} is a permutation of Y = {y1, ..., yn} such that zj ≥ zj+1, ∀j∈
{1, ..., n− 1};

– if q = {i1, ..., il}, with ij < ij+1 ∀j ∈ {1, ..., l − 1}, is a max l -query then
max{zi1 , ..., zil

}=zi1;
– if q = {i1, ..., il}, with ij < ij+1 ∀j ∈ {1, ..., l − 1}, is a min l -query then

min{zi1, ..., zil
}=zil

;
– for each zj, µ

(t)
j and λ

(t)
j are respectively its best upper bound and its best

lower bound after {q1, ..., qt} (see Definition 1 and Definition 2).

Given {q1, q2, ..., qt} a set of max and min queries already submitted and {m1, m2,
..., mt} the set of the corresponding answers, then the BN, representing user knowl-
edge without prior knowledge about the domain of the sensitive field, is such that:

– a node encoding the sensitive variable zj, with j ∈
⋂t

k=1 qk, has the following
states:
• r1 and r2, with r1 < r2 = µ

(t)
j and prior probability distribution equal

to (1
2 , 1

2 ), if j is in only max queries;
• r1 and r2, with λ

(t)
j = r1 < r2 and prior probability distribution equal

to (1
2 , 1

2 ), if j is in only min queries;
• r1, r2 and r3, with λ

(t)
j = r1 < r2 < r3 = µ

(t)
j and prior probability

distribution equal to (1
3 , 1

3 , 1
3 ), if j is in max and min queries;
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Table 1. n = 5, r = 4. Table with a duplicate sensitive value.

X x1 x2 x3 x4 x5

Z 9 8 8 5 4

a) b)

Fig. 3. Examples. a) tol = 0.8. Privacy is breached. b) To manage duplicates values.

– if ∃j ∈ K|j �∈
⋂t

k=1 qk, then there is not a node encoding the sensitive
variable zj;

– a binary max node with value equal to M has two states: r1 and r2, with
r1 < r2 = M ;

– a binary min node with value equal to m has two states: r1 and r2, with
m = r1 < r2.

Our model is able to:

1. deny if the privacy is breached (Definition 3). See Example 6;
2. deal with “duplicated values” of the sensitive field in an efficient way. See

Example 7.

In the following examples, we consider Table 1.

Example 6. Let tol = 0.8 be the tolerance value. If the user submits the max
query q1 = {1, 2} and the min query q2 = {2, 3}, then the corresponding BN
is shown in Fig. 3 a). Thus, because the posterior probabilities P (z1 = 9|m1 =
9, m2 = 8) = P (z3 = 8|m1 = 9, m2 = 8) = 0.8 = tol, then the auditor has to
deny the second query.

Moreover, we can see that nodes encoding z1 and z3 have two states because
they are respectively in a max query and in a min query, the node encoding z2

has three states because it is in a max and in a min query.

Example 7. Let tol = 0.9 be the tolerance value. If the user submits the max
query q1 = {2, 4}, the max query q2 = {3, 5} and the min query q3 = {2, 5},
then the corresponding BN is shown in Fig. 3 b). In addition to the information
given by the answers to the queries, the user also knows that max{z3, z4} must
be 8 since one of z2 or z5 has to be 4. In the previous work [10], the auditor
needs to maintain, in addition to submitted queries, also inferred queries, as for
instance max{z3, z4} = 8, with a possible blow up in the number of queries that
need to be maintained. This could not happen in the absence of duplicates since
the first two queries could never have the same answer. In our model, even if
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there is not a node encoding the query max{z3, z4}, this additional knowledge
is captured and, moreover, if the user submits the max query q4 = {3, 4}, there
is no need to add the corresponding node.

4.4 Dealing with Implicit Delivery of Information Deriving from
Denial

In this section, the implicit delivery of information, that derives from denying
the answer to a query, is considered. Intuitively, denials leak information because
users can ask why a query is denied, and the reason is in the data.

As a simple example, assume that a query is denied only if some value is
compromised. Assume that the user submits the first max query q1 = {1, 2, 3}
and the auditor answers 8. Assume also that the user then submits the second
max query q2 = {2, 3} and the auditor denies the answer and finally the user
submits the third max query q3 = {1, 2} and the auditor provides the answer 8.
The denial tells the user that if the true answer to the second query were given
then some value could be determined.

If the decision to allow or deny a query depends on the actual data, it reduces
the set of possible consistent solutions for the underlying data. Thus, the decision
to deny or answer the current query qt must be independent from the actual
answer mt.

Therefore, the auditor denies the answer to a query, not only if the privacy is
breached, but also in the following cases:

1. the probability that a sensitive variable is equal to a value is greater or equal
to a given tolerance threshold (even if this value is not the actual value of
the sensitive data item). See Example 8;

2. for a possible answer to qt, the probability that a sensitive variable is equal
to a value is greater or equal to a given tolerance threshold (even if this value
is not the actual value of the sensitive data item). See Example 9.

Example 8. Let tol = 0.8 be the tolerance value, then the third query in Example
7 is denied, because P (z3 = 8|m1 = 8, m2 = 8, m3 = 4) = P (z4 = 8|m1 =
8, m2 = 8, m3 = 4) = 0.8571 > tol. We can see that the actual value of z3 is 8,
but the actual value of z4 is 5.

In general, if there is j such that its posterior probability P (zj = x|m1, ..., mt) >
tol then the query is denied even if zj �= x.

Example 9. Let tol = 0.8 be the tolerance value. The user submits the max query
q1 = {1, 2, 3}, the auditor provides the answer m1 = 8; the corresponding BN is
shown in Fig. 2 a). We suppose that the user submits the max query q2 = {1, 2}:
if the answer is m2 = 8 (see Fig. 2 b)) then the privacy is not breached; if
m2 < 8 (see Fig. 2 c)) then the private association (x3, 8) is disclosed with
probability equal to 1. Thus, independently from the actual value of m2, the
answer is denied.
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a)

b)

Fig. 4. Comparison. a) BN does not model user knowledge on probability distribution
of the sensitive field. b) BN models user knowledge on probability distribution of the
sensitive field.

4.5 Dealing with Known Probability Distribution of the Sensitive
Field

In this section, we assume that the probability distribution of the sensitive field
is known. Thus, we do not consider anymore that each state is equally prob-
able, but the prior probabilities depend on probability distribution of the sen-
sitive field. We show how the auditor denies the answer to a query if the BN
models the probability distribution of the sensitive field, and gives the answer
otherwise.

Example 10. Consider the baseball dataset in [15], it consists of 377 records. We
have added a field ID, in such way that (ID, Salary) is the private association,
with ID the field identifying the baseball player and Salary the sensitive field.
The dataset comprises 210 distinct values of Salary. We assume that the prob-
ability distribution of the sensitive field is public, and in particular it is known
to the user.

Let tol = 0.8 be the tolerance value. Given the queries q1 = {1, 48, 49} and
q2 = {1, 56, 57} then m = m1 = m2 = 6100.

If the BN does not model user knowledge about the probability distribu-
tion of the sensitive field then each node encoding a sensitive variable has prior
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a) b)

Fig. 5. Experimentation. a) The CPT size rises to around 5500 after 1000 queries. b)
The time to answer 1000 queries is around 1400000.

probability distribution equal to (1
2 , 1

2 ), and after q2 the BN is in the state of
Fig. 4 a). Therefore, the auditor knows that the private association (x1, 6100) is
disclosed with probability equal to 0.64, then he provides the answer to q2.

Else, if the BN models user knowledge about the probability distribution of the
sensitive field then each sensitive variable has prior probability distribution equal
to (0.9973, 0.0027), because P (zj < 6100) = 0.9973 and P (zj = 6100) =
0.0027. After q2 the BN is in the state of Fig. 4 b). Therefore, the auditor
knows that the private association (x1, 6100) is disclosed with probability equal
to 0.9894, then he denies the answer to q2.

Because, it is very unlike that an user knows exactly the probability distri-
bution of the sensitive variable, it is natural to approximate this knowledge. If
P (zj = 6100) ≈ 0.05 then P (z1 = 6100|m1 = 6100, m2 = 6100) ≈ 0.8470. Also
in this case, the auditor has to deny the answer.

Remark 1. In Example 10, we can see that there is a large difference between
the prior and the posterior probability; we think that the probabilistic definition
of privacy can be improved if this difference is considered.

5 Experimentation

The experimentation is conducted on a computer with the following properties:
HP Compaq dc7100; Pentium(R) 4 CPU 2.80 GHz; 2 GB of RAM. In the exper-
imentation, we run sequences of 1000 queries and set tolerance (see Definition 3)
equal to tol = 0.8. We consider the baseball dataset in Example 10. Each max or
min query is generated in random way with length in the range [2, ..., n]. From
Fig. 5 a), we can see that the CPT size grows quickly with the first queries,
then it grows much more slowly. The time to answer a single query (see Fig.
5 b)) grows linearly with the number of queries. Table 2 reports the statistical
variables for the time to answer a single query. Finally, in order to analyze the
utility of our model, in Fig. 6 we show how the probability to denial grows; it
rises to around 0.3 after 1000 queries.
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Table 2. Experimentation. Statistical analysis for time(ms) to answer a single query.

MEAN 1435.82

STANDARD DEVIATION 1140.863

MAX 6671

MIN 125

MEDIAN 1125

Fig. 6. The probability to denial rises to around 0.3 after 1000 queries

6 Conclusion and Future Work

We propose a novel approach to reasoning under uncertainty in on-line auditing
in Statistical Databases. We have demonstrated how our model is able to:

– deal with on-line max and min auditing without maintaining query logs;
– deal with a probabilistic definition of privacy, independently from the prob-

ability distribution of the sensitive field;
– manage efficiently duplicated values of the sensitive field;
– provide a graphical representation of user knowledge;
– capture user prior knowledge;
– consider the case in which denial leaks information.

The goal of our future work is fourfold:

1. to quantify the utility of the auditing scheme, as exact analysis of utility for
max and min queries is an open problem;

2. to improve the definition of probabilistic privacy, considering the difference
between prior and posterior probability;

3. to use a BN as a unifying framework including the interactions among the
various domains of uncertainty;

4. to include combinations of different statistical queries (sum, mean, count,
etc.).
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Abstract. This paper is concerned with the problem of balancing the
competing objectives of allowing statistical analysis of confidential data
while maintaining standards of privacy and confidentiality. Remote anal-
ysis servers have been proposed as a way to address this problem by
delivering results of statistical analyses without giving the analyst any
direct access to data. Several national statistical agencies operate suc-
cessful remote analysis servers, see for example [1,12].

Remote analysis servers are not free from disclosure risk, and current
implementations address this risk by “confidentialising” the underlying
data and/or by denying some queries. In this paper we explore the al-
ternative solution of “confidentialising” the output of a server so that no
confidential information is revealed or can be inferred.

In this paper we first review relevant results on remote analysis servers,
and provide an explicit list of measures for confidentialising the output
from a single regression query to a remote server, as suggested by Sparks
et al. [22,23]. We give details of a fully worked example, and compare
the confidentialised output from the query to a remote server with the
output from a traditional statistical package.

Keywords: Remote access facilities, remote server, analysis server,
model server, confidentiality.

1 Introduction

National statistical agencies, health administration agencies and others currently
face a dilemma. On the one hand, analysis of the growing electronic data archives
they hold can be vital for informed decision making, effective policy development
and evaluation of the impact of decisions, policies and interventions. On the other
hand, the use and analysis of these data archives must be conducted in such a
way as not to compromise standards of privacy and confidentiality.

A high level discussion of the problem of enabling the use of health data while
protecting privacy and confidentiality typically discusses two broad categories,
which are often used in combination. The first is restricted access, where access
is only provided to approved individuals for approved analyses, possibly at a
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restricted data centre, and possibly with further measures such as restrictions
on the types of analyses which can be conducted and restrictions on the types of
outputs which can be taken out of the room. The second is restricted or altered
data, where less than the full data set is published or the data are altered in some
way before publication. Restricted data might involve removing attributes or
observations, aggregating geographic classifications or aggregating small groups
of data. Common examples of techniques for altered data include the addition
of noise, data swapping or the release of synthetic data, see [3,4,24].

Current technological methods for resolving the dilemma in practice fall into
three main approaches, as follow. In the de-identification approach, identifying
attributes are removed from the data set and the remaining fields are released to
analysts with no further modification and under strict controls. In statistical dis-
closure control the released data set is de-identified and then “confidentialised”
by making various modifications such as rounding, deleting values, adding ran-
dom noise to data or releasing synthetic data designed to be similar to the
original data [3,4,24]. Remote analysis servers are designed to deliver useful re-
sults of user-specified statistical analyses with acceptably low risk of a breach of
privacy and confidentiality. Remote analysis servers do not release any data, or
sometimes only a limited sample. Instead, they accept queries which are run on
the original data and only confidentialised results are returned to the analyst.

The approaches of de-identification and statistical disclosure control fall into
the restricted or altered data category. Remote analysis servers use elements of
restricted access in combination with elements from the additional broad cate-
gories restricted queries and restricted output. As the names suggest, restricted
queries does not allow the full range of analyses to be performed while restricted
output involves some confidentialisation of the output of the server. The main
challenge in the area of remote servers is to design systems for restricted output.
In some applications remote servers may restrict data (for example to a random
95% sample) or alter data through making only confidentialised data available.

Each of these approaches must be implemented within an appropriate legisla-
tive and policy environment and governance structure, and with user community
management and IT security including user authentication, access control, sys-
tem audit and follow-up. It is useful to develop a range of solutions because
different scenarios may have different requirements.

In the remainder of this Introduction we provide a review of relevant results
on remote analysis servers, considering the cases of single queries and multiple
interacting queries separately. In Section 2 we provide an explicit list of measures

Table 1. Categories and approaches to balancing data use with confidentiality

De-identification Stat. disclosure control Remote Server

Restricted access X

Restricted data X X

Restricted queries X

Restricted output X
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suggested by Sparks et al. [22,23] for confidentialising the output of a single re-
gression model fitting query to a remote server. Section 3 provides the details of
an example of regression fitting on a real data set, and compares the confiden-
tialised response to the query from a remote server as well as the response from
a traditional statistical package. The final section is a discussion of the results.

1.1 Remote Analysis Servers - Single Queries

This paper is about remote analysis servers, which do not provide data to users,
but rather allow statistical analysis to be carried out remotely. A user submits
a statistical query, an analysis is carried out on the original data in a secure
environment, then the user receives the results of the analysis. The query could
be submitted either as a user-written piece of code or through making selections
on a menu-driven interface. The results of the analysis may be filtered or modi-
fied to protect confidentiality, or no results provided. For reviews of systems in
use in national statistical agencies, see [13,20]. Despite the technical challenges
in addressing, for example, missing data, outliers, selection bias testing and as-
sumption checking [22], it seems to be generally agreed that remote analysis
servers will play an important role in the future of data dissemination [17].

Early proposals combined a remote access server for query restriction with
statistical disclosure control techniques on the underlying data set [5,6,11,21].

An important advance has been the development of table servers which dis-
seminate marginal sub-tables of a large contingency table. More specifically, the
target database of a table server is a large, high-dimensional contingency table
whose cells contain counts or sums. Users submit requests for marginal sub-
tables of the full tables to the server, where each sub-table is specified by the
variables that it contains. Potential responses to the user include the requested
table, a projection of it, an otherwise modified version of the requested table or
a notice of refusal, where the choice of response is made to minimise the disclo-
sure risk. In static mode, the set of allowable responses of a for a given table
is pre-computed. In dynamic mode, the response to each query depends on the
queries that the server has previously answered, in that the disclosure risk of a
given query is assessed in the light of responses given to previous queries. For
more information on table servers, see for example [2,9,10].

There is increasing interest among researchers and practitioners in model
servers, which respond to requests for relevant output such as estimated pa-
rameters and standard errors from statistical models involving a response and
one or more predictor variables. Most effort has been directed at linear regres-
sion. Reiter [16] noted that to be most useful the remote server should also
provide some way for users to check the fit of their models, without disclosing
actual data values.

Reiter [16] suggested releasing synthetic regression diagnostics - that is, simu-
lated values of residuals and response and explanatory variables for a regression,
constructed to mimic the relationships among the actual data residuals and ex-
planatory variables . Users then treat these synthetic values like ordinary diag-
nostic quantities, for example by examining scatter lots of the synthetic residuals
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versus the synthetic explanatory variables or versus the synthetic fitted values.
Several examples on simulated and real data sets are provided. For regressions
involving categorical explanatory variables, in particular logistic and multino-
mial regressions, the release of grouped diagnostics has been proposed as a way
to release diagnostics which do not reveal individual data values [18]. Several
examples on simulated and real data sets are provided. Note that synthetic data
is an example of the restricted data category of approaches to enabling analysis
while protecting confidentiality.

All remote analysis servers are not free from the risk of disclosure, especially
in the face of multiple, interacting queries [7,16,18,19,22,23].

Sparks et al. [22,23] have explored disclosure risks associated with the response
generated by a single request to a remote analysis server, while still giving useful
output. Disclosure risks are described for exploratory data analysis, the fitting
of survival models, linear regression models, tree based models and generalized
linear models, and time series analyses. Mitigating strategies are proposed which
reduce the risk of a user reading or inferring any individual record attribute
value. Examples from biostatistics are provided and a software demonstrator
(Privacy-Preserving Analytics R© (PPA R©)) is described. Some of the methods
proposed involve the modification or restriction of standard statistical analyses
submitted through a menu-driven interface, whereas others involve modifications
to the output of fitted models. In particular, they do not involve applying any
traditional statistical disclosure techniques to the underlying microdata (except
in the case of using a random 95% sample of the microdata in some analyses).
The approaches are examples of the restricted queries and restricted output
categories.

Amongst the variety of restricted queries and restricted output methods pro-
posed for various different types of analysis, Sparks et al. [23] suggest a new
approach to releasing diagnostic checks of regression fit and checks of assump-
tions while reducing disclosure risk. The suggestion is to replace each scatterplot
(such as residuals versus each explanatory variable and residuals versus fitted
value) with a display of parallel boxplots constructed on the actual data, and to
replace each qq-plot of actual data values versus specified distribution quantiles
by a fitted robust non-parametric regression line, after removing outliers.

A comparison of the fundamentally different approaches of Reiter [16] and
Sparks et al. [23] is provided in [14].

1.2 Remote Analysis Servers - Multiple Queries

Gomatam, Karr, Reiter and Sanil [7] describe disclosure risks associated with
multiple, interacting queries to model servers, primarily in the context of re-
gression servers, and propose quantifiable measures of risk and data utility. A
detailed illustration is given in the case of a static regression server responding
to requests for regression analyses on data with one sensitive variable, which
the agency wishes to prevent intruders being able to predict too accurately from
multiple released regressions with other variables as explanatory variables. If
no transformations of the variables are permitted, the authors show how to
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determine the optimal set of answerable queries within the set of all regression
queries, by balancing disclosure risk with data utility.

In the case of multiple queries to remote analysis servers, it is still vital to
ensure that each single query does not reveal confidential information, so tech-
niques such as those described in Section 1.1 are needed as well as additional
measures to address the additional risks posed by multiple, interacting queries.

2 Techniques for Confidentialising Output from a Single
Query to a Remote Regression Server

Sparks et al. [23] have proposed methods by which the outputs from a range
of individual statistical queries can be modified so that the results contain no
directly identifying information, the exact value of any unit record is not re-
vealed and only very little information about any unit record is revealed. These
modifications produce results which are unlikely to enable the identification of
individuals either directly or through inference. In this paper we provide exam-
ples of the operation of these techniques for the special case of fitting regression
models.

2.1 Explicit Statement of Techniques

In this section we give an explicit statement of the techniques proposed by Sparks
et al. [23] in the case of regression model fitting. The methods combine elements
from each of the broad categories: restricted access, restricted data and restricted
analyses of Section 1.

Restricted Access
1. If the model has one of the following properties, do not return any results.

(a) One or more explanatory variables is a factor for which there is a level
with few values.

(b) Interactions between factors have too few values in the interaction levels.
2. As the analyst fits more and more models to the data, some subsets of the

fitted models will not be permitted.
(a) A different subset of the observations is used for each subset model.

Restricted Data
3. All queries will be run on a sample of the target data of predetermined size,

depending on the level of authorisation of the analyst.
(a) The same sample is used for the same analyst and data for all similar

queries, however different types of queries will be run on different samples
of the same size.

Restricted Analyses
4. Use robust regression instead of traditional regression

(a) If using the rlm function to fit a robust linear model in R, then PPA
selects automatically and randomly from the three available choices for
the so-called ψ-function (namely, Huber, Hampel or Tukey bisquare) and
use the same function whenever the same query is submitted. Note that
rlm is robust in that it downweights influential observations/outliers.
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5. The scale of the response and explanatory variables cannot be changed.
6. No new variables can be constructed from the data and no values can be

added to the explanatory variables.
7. Transformations of explanatory variables is not permitted, except for a lim-

ited range of simple transformations such as log and square root.
8. No tranformation of factors is allowed.
9. The choice of Box-Cox power tranformation of the response values is auto-

mated.
10. At most two-way interactions between variables can be included in models.

(a) Factor interactions with a small number of values in any cell are not
permitted.

Restricted Output
11. The estimated covariance matrix, the fitted values and the residual values

are not provided.
12. If the model error is too small, provide only the level of significance of the

parameters, not the values.
13. Estimated regression coefficients are rounded, where the rounding amount

is determined by the effect on the predicted response values.
(a) The same rounding is provided for each subset model fitted.

14. Diagnostic plots are confidentialised, as follows:
(a) A display of parallel boxplots is provided for model residuals.
(b) Smoothed qq-plots are provided.
(c) In plots of residuals against observation number for each subset model,

the order of the observations will be randomised.

The procedure for constructing a display of parallel boxplots as in 14(a) is
explained in full in [23] and [14]. In particular, each bin contains a predetermined
minimum number of observations and continuous variables are discretised by
using quantile methods. Also, the plots are winsorised, that is, any observation
which is more than 2.64 standard deviations away from the mean is set to the
mean plus or minus 2.64 standard deviations. This does not affect the calculation
of the mean or standard deviation, it is just used in constructing the boxplot.

3 Example of Regression Model Fitting

In this section we provide a comprehensive example, describing first the data
and the analysis to be performed. We display the output generated by the query
to CSIRO’s PPA software demonstrator. For comparison, we also display tra-
ditional, unaltered output for the same analysis of the same data from the R
package [15].

For this example we will use publicly available data from a study to test
the safety and efficacy of estrogen plus progestin therapy to prevent recurrent
coronary heart disease in postmenopausal women. The study is called the Heart
and Estrogen/Progestin Replacement Study (HERS) and is described in [8].

The HERS data HERSdata contains information on the characteristics of 2763
participants in the HERS study, who were all women younger than 80 years with
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coronary disease and who were postmenopausal with an intact uterus. The mean
age of the participants was 66.7 years. We will use the (continuous) variables: age
in years (age), education in years (educyrs), body mass index (bmi) and systolic
blood pressure (sbp), and the (discrete) variables/factors: ethnicity (raceth), di-
abetes comorbidity (diabetes), insulin used (insulin), previous coronary artery
bypass graft surgery (pcabg), at least one drink per day (drinkany) and atten-
dance at exercise program or regular walking (exercise).

We wish to fit a regression model with sbp as the response variable and all
other characteristics as explanatory variables.

In the next two sections we will discuss the fitting of this model using the
PPA software and with the traditional glm function of R, showing details of the
inputs and outputs. In the case of PPA we show how the analysis inputs and
outputs implement the measures discussed in Section 2.

3.1 PPA Analysis

Generalised linear modelling in PPA is offered through a menu-driven interface.
The user selects, from drop-down menus, the data and response variable. In
the existing early prototype of the PPA software, the user selects from lists
the continuous variables and factors as predictors, but these will be deduced
automatically from the response variable and metadata in future versions. The
user selects from lists the interactions to be included in the model. Further drop-
down menus allow the user to select the offset variable, the family and the link
function. Finally, pressing the Analyse button submits the specified query.

Figure 1 shows the PPA input screen for the analysis described. The use of
the menu-driven screen implements the Restricted Analyses techniques 5, 6, 7,
8, 9 and 10 described in Section 2 for protecting confidentiality. The Restricted
Access techniques 1 and 2, Restricted Data technique 3 and Restricted Analyses
technique 4 are implemented in the software behind the interface.

The PPA software provides the following output to the analysis, implementing
the Restricted Output techniques 11, 12, 13 and 14 of Section 2.

Details of the call to R
– datafile - HERSdata.csv
– response - sbp
– mainlist - c(age, educyrs, bmi)
– factorlist - c(raceth, diabetes, pcabg, drinkany, exercise, insulin)
– interlist - c() (interactions)
– infamily - gaussian
– inlink - identity
– variance - constant
– offset - NULL
– scriptFile - linearmodel/glm.r
– zeroInflation - FALSE
– overDispersion - FALSE
– subsetSize - 0.95
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Fig. 1. Screen shot of PPA query input interface

– rows in initial data: 2763; rows in sampled data: 2620
– ∼ age + educyrs + bmi + factor(raceth) + factor(diabetes) + factor(pcabg)

+ factor(drinkany) + factor(exercise) + factor(insulin)
– Call: glm(formula = as.formula(paste(response, formula)),

family = eval(familyexp), data = indata) where indata is a random 95%
sample of the HERS data.

Analysis of Deviance table. Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 2619 949964
age 1 27997 2618 921968
educyrs 1 10207 2617 911761
bmi 1 6065 2616 905696
factor(raceth) 2 1894 2614 903802
factor(diabetes) 1 14145 2613 889656
factor(pcabg) 1 6814 2612 882842
factor(drinkany) 1 95 2611 882747
factor(exercise) 1 3216 2610 879531
factor(insulin) 1 202 2609 879329
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Summary results

Coefficients: Estimate Pr( > | t |)
(Intercept) 103.748 p<0.005 ***
age 0.530 p<0.005 ***
educyrs -0.560 p<0.005 ***
bmi 0.124 0.05<p<0.1 .
factor(raceth)Latina, Asian, other -3.164 0.1<p<0.2
factor(raceth)white -2.319 0.05<p<0.1 .
factor(diabetes)yes 5.449 p<0.005 ***
factor(pcabg)yes 3.462 p<0.005 ***
factor(drinkany)yes -0.449 p>0.5
factor(exercise)yes -2.336 p<0.005 **
factor(insulin)yes -1.124 0.2<p<0.5

Significance codes: “0” 0; “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “ ” 1.
Dispersion parameter for gaussian family taken to be 337.0369.
Null deviance: 949964 on 2619 degrees of freedom.
Residual deviance: 879329 on 2609 degrees of freedom.
AIC: 22697.
Number of Fisher Scoring iterations: 2.

Data and Diagnostic Plots
Figure 2 shows displays of parallel boxplots provided as confidentialised output
for each explanatory variable against the response variable sbp. Use of the label
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Fig. 2. PPA confidentialised plots of explanatory variables against response variables
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Factors or discrete values for variable . . . on the x-axis indicates that the variable
being plotted is either discrete or a factor. The x-axis label Mid point of interval
for . . . indicates that the variable being plotted is continuous, but has been
discretised. The note Data may have been winsorized as described in Section 2.

Other plots provided by PPA as confidentialised output include displays of
parallel boxplots of partial residuals for each variable in the model as in Figure 3.
Normality assumptions can be assessed with smoothed qq-plots. If there are
outliers present the following text appears on the plot: “Some extreme values
may have been removed.” In such cases it may be more appropriate to fit robust
regression models.

For space reasons the confidentialised plot of residual values against obser-
vation numbers is not shown, however this figure is also drawn as a display of
parallel boxplots.

3.2 Traditional R Analysis

A generalised linear model is fitted in R by submitting the following query to
the glm function:

Model = glm(sbp ∼ age + educyrs + bmi + factor(raceth) + factor(diabetes) +
factor(pcabg) + factor(drinkany) + factor(exercise) + factor(insulin)).
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Fig. 3. PPA confidentialised term plots for each explanatory variable
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The resulting model object contains information that can be accessed in a
number of ways.

The command Anova(Model) will output the analysis of deviance table show-
ing the effect of addition of each variable to the model. The Analysis of Deviance
table is in the same format as the PPA confidentialised Analysis of Deviance ta-
ble given in Section 3.1 above. The only difference is that the R analysis is run
on the full HERSdata data, while PPA was run only on the random 95% sample
indata.

The command Summary(Model) will output the Summary Results as shown
below. Further options allow the analyst to print covariance and/or correlation
matrices and to explore aliased coefficients. Other output contained within the
model object includes the model residuals, fitted values and the ability to fit
predicted values.

Summary results

Coefficients: Estimate Std. Error t value Pr( > | t |)
(Intercept) 105.89708 4.75504 22.270 < 2e−16 ***
age 0.50444 0.05376 9.384 < 2e−16 ***
educyrs -0.60095 0.13800 -4.355 1.38e−05 ***
bmi 0.11480 0.06763 1.698 0.08970 .
factor(raceth) -2.60109 2.27871 -1.141 0.25377
Latina, Asian, other
factor(raceth)white -2.07604 1.33316 -1.557 0.11953
factor(diabetes)yes 5.77120 0.98320 5.870 4.89e−09 ***
factor(pcabg)yes 3.58667 0.71624 5.008 5.86e−07 ***
factor(drinkany)yes -0.33294 0.75055 -0.444 0.65737
factor(exercise)yes -2.46810 0.73606 -3.353 0.00081 ***
factor(insulin)yes -1.15651 1.41227 -0.819 0.41291

Significance codes: “0” 0; “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “ ” 1.
Dispersion parameter for gaussian family taken to be 336.0279.
Null deviance: 996807 on 2753 degrees of freedom.
Residual deviance: 921725 on 2743 degrees of freedom.
9 observations deleted due to missingness.
AIC: 23849.
Number of Fisher Scoring iterations: 2
Deviance Residuals

Min 1Q Median 3Q Max
-52.32 -12.68 -1.31 11.13 77.29

Data and Diagnostic Plots
The user would typically investigate a number of diagnostics, such as the term
plots in Figure 4.
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Fig. 4. Traditional term plots of residuals against variables

4 Discussion

This paper has provided detailed examples of confidentialised output from a re-
mote analysis server and of unaltered data from a traditional statistical package,
using the same analysis query on the same data.

The first observation to make is that the remote analysis server restricts the
queries that can be submitted by providing only a menu-driven interface. Some
other confidentialisation measures are implemented in software behind the in-
terface, though the only one that restricts or alters the data in any way is the
selection of a random 95% sample of the data for analysis.

In terms of model output, the remote analysis server does not provide the
Deviance Residuals displayed by R. However it does provide an Analysis of De-
viance table, parameter estimates and diagnostic plots which are confidentialised
versions of those provided by the statistical package R. The use of a random 95%
sample of the data in PPA leads to sampling error and therefore the parameter
estimates from PPA and the traditional analysis may differ.

In situations in which a data custodian does not wish to give analysts access
to a confidential data set, we believe that this example provides evidence that
the confidentialised regression model fitting output of a remote analysis server
may be an acceptable substitute for traditional regression model fitting output
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in some applications. Although analysts prefer to have unrestricted access to
data, a remote analysis server seems to be an acceptable alternative to no access
at all.

Finally, in some models there may be sensitive factors that may identify an
entity such as a hospital or surgeon, for example. Future versions of PPA will
allow an analyst to include such factors in a model, however their parameter
estimates will not be published.
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Abstract. Data mining technology raises concerns about the handling
and use of sensitive information, especially in highly distributed environ-
ments where the participants in the system may by mutually mistrustful.
In this paper we argue in favor of using some well-known cryptographic
primitives, borrowed from the literature on large-scale Internet elections,
in order to preserve accuracy in privacy-preserving data mining (PPDM)
systems. Our approach is based on the classical homomorphic model for
online elections, and more particularly on some extensions of the model
for supporting multi-candidate elections. We also describe some weak-
nesses and present an attack on a recent scheme [1] which was the first
to use a variation of the homomorphic model in the PPDM setting. In
addition, we show how PPDM can be used as a building block to obtain
a Random Forests classification algorithm over a set of homogeneous
databases with horizontally partitioned data.

Keywords: Privacy and accuracy; Homomorphic encryption;
Distributed systems; Frequency mining.

1 Introduction

Data mining aims at extracting valuable, non obvious information from large
quantities of data [2]. This technology has broad applications in areas related to
market research, as well as to financial and scientific research. Despite the poten-
tials for offering valuable services, there have been concerns about the handling
and use of sensitive information by data mining systems. The problem is even
more intense nowadays with the proliferation of the Web and ICT technologies,
and the progress in network, storage and processor capacity, where an enormous
pool of private digital data can be easily gathered, or inferred from massive col-
lections of public data such as Facebook.com, by using well-known data mining
techniques. Even when access to sensitive data is controlled, public data can
sometimes be used as a path towards private data [3].
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Privacy concerns may also prevent building accurate data mining models.
Traditionally, data mining algorithms have been applied in centralized collec-
tions of data. With distributed databases, data may be horizontally or vertically
partitioned among a set of mutually mistrustful sites, where each site may hold
similar data about different people or different data about the same set of peo-
ple, respectively. This is also known as the Server to Server (S2S) model [4]. In a
fully distributed setting, also known as the Client to Server (C2S) model [4], cus-
tomers may be on hold of their own collections of sensitive data. Such data may
need to be correlated with other clients’ data, for example in order to provide
some useful service. The traditional data warehousing approach, where dispersed
data are gathered into a central site for building the data mining model, raises
privacy concerns as organizations and people are reluctant to reveal their private
data for legal, commercial or personal reasons. The simple approach of perform-
ing data mining at each site independently and then combine the results (e.g.,
[5]) cannot always be possible (e.g., in the C2S setting) or accurate enough [6].

The need for privacy in statistical databases is driven by law, compliance,
ethics, as well as for practical reasons: it would enable collaboration between
data holders (e.g., customers, organizations), if they were assured that their
sensitive information would be protected. To this end, Privacy Preserving Data
Mining (PPDM) has been evolved as a new branch of research in the data mining
community [7]. Especially in distributed statistical databases, where there is a
need to extract statistical information (e.g., sum, average, entropy, Information
Gain, etc) without compromising the privacy of the individuals [8].

A very common approach in the PPDM literature has been data perturba-
tion, where original data are perturbed and the data mining model is built on
the randomized data. For example, the data perturbation approach has been
used for classification [9] and building association rules [10,11]. Typically, such
approach involves a trade-off between two conflicting requirements: the privacy
of the individual data and the accuracy of the extracted results [8,12]. In ad-
dition, there are cases where the disclosure of some randomized data about a
client may reveal a certain property of the client’s private information, an attack
known as privacy breach [10,12]. Alternatively, and orthogonally to our research,
the privacy preserving issue can also be regarded as an access control problem
concerning aggregate data in more or less controlled environments. In this regard,
multilevel and multilateral security in database information systems (e.g., [13]),
trusted platforms, query restriction policies and inference control [8,14,15] as
well as anonymization techniques [16] have also been proposed in the literature.

Traditionally, the use of cryptographic primitives has also been well stud-
ied by the database security community [17]. In the academic literature for
PPDM, following the line of work that begun with Yao [18], most theoretical
results are based on the Secure Multiparty Computation (SMC) approach (e.g.
[19,6,20]). SMC protocols are interactive protocols, run in a distributed network
by a set of entities with private inputs, who wish to compute a function of
their inputs in a privacy preserving manner. The goal is that no more informa-
tion is revealed to an entity in the computation than can be inferred from that
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participant’s input and output [21]. SMC has been used for mining association
rules on both horizontally [20] and vertically partitioned databases [6]. Classi-
fication models that use the SMC approach involve decision trees [19,22] and
a naive Bayes Classifier for horizontally partitioned data [23], as well as deci-
sion trees for vertically partitioned data [24]. A disadvantage of this approach
is that SMC protocols require multiple communication rounds among the par-
ticipants, and privacy usually comes at a high performance and communication
cost [22]. Most protocols in the SMC family are efficient as long as the number
of participants is kept small (e.g., two or three parties).

Our Contribution. In this paper we explore whether it is possible to use ef-
ficient cryptography in order to perform privacy preserving data mining, e.g.,
in statistical databases, while maintaining the accuracy of the results. To this
end we argue in favor of borrowing knowledge from a broad literature dealing
with cryptographic elections via the Internet. We discuss some weaknesses and
describe an attack on a recent PPDM scheme of Yang, Zhong and Wright [1]
which, to our best knowledge, was the first work that used a variation of the
classical homomorphic model [25] for online elections. Our PPDM approach will
be based on the classical homomorphic model of Cramer, Gennaro and Schoen-
makers [25] for online elections, and more particularly on some recent extensions
proposed in [26,27] for multi-candidate elections. We show how this approach
could be used to mine frequencies on a large set of customer databases. As an
example, we also propose the use of PPDM as a building block to obtain a Ran-
dom Forests classifier learning algorithm over a set of homogeneous databases
with horizontally partitioned data.

2 PPDM Based on the Homomorphic (Election) Model

We argue that research for privacy preserving data mining could borrow knowl-
edge from the vast body of literature on Internet voting systems [28]. These
systems are not strictly related to data mining but they exemplify some of the
difficulties of the multiparty case. Such systems also tend to balance well the
efficiency and security criteria, in order to be implementable in medium to large
scale environments. Furthermore, these systems fall within our distributed com-
puting scenario and have similar architecture and security requirements. In an
Internet election for example, an election authority receives several encrypted
yes/no votes (e.g., yes = 1 and no = 0) and declares the winning candidate. In
this setting the goal is to protect the privacy of the voters (i.e., unlinkability
between the identity and the vote that has been cast), while also establishing
eligibility of the voters, accuracy and verifiability for the election result.

The most efficient schemes in the literature for cryptographically secure online
elections follow the homomorphic model [25]. This model is a general framework
that allows usage of any randomized encryption scheme with several “nice” al-
gebraic properties, in order to protect the privacy of the encrypted votes and
establish accuracy of the decrypted results in a universally verifiable way. With
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homomorphic encryption there is an operation ⊕ defined on the message space
and an operation ⊗ defined on the cipher space, such that the “product” of the
encryptions of any two private inputs is the encryption of the “sum” of the in-
puts: E(M1)⊗E(M2) = E(M1⊕M2). This property allows, for example, either
to tally votes as aggregates or to combine shares of votes (e.g., [29,30]), without
decrypting single votes.

In [25] each client signs and then submits an encryption of her vote to a bul-
letin board [31], together with a zero-knowledge proof [32] that the vote is valid.
The homomorphic model does not require interactions between clients, and only
one flow of data is sent to the server. Privacy is established in a strong cryp-
tographic sense: original inputs are encrypted using the randomized encryption
scheme to preclude chosen-plaintext [33] attacks on the published encryptions; in
addition, no encrypted input is ever decrypted, but instead it is combined with
the other inputs to get the encrypted aggregate. The homomorphic property of
the encryption scheme allows every participant to verify that the final results are
accurate, by performing a multiplication of the encrypted inputs and comparing
the encrypted aggregate to the value published on the bulletin board. Robustness
in such protocols is established by using threshold cryptography [34], where the
power of the election authority is divided among a set of n independent servers,
in a way that a set of t ≤ n honest servers are able to cooperate and compute
the decrypted outcome. As a result, the privacy of clients is assured against any
coalition of less than t servers.

Compared with the election setting, the threat model in PPDM seems to
be relaxed. Adversaries in distributed systems for data mining are considered
as semi-honest (also referred to as honest but curious) [22]. This means that
they are legal participants that follow the protocol specification but try to learn
additional information given all the messages that were exchanged during the
protocol. This fact favours the adoption of the homomorphic model in PPDM
systems. First of all, there is no need for clients to construct complex zero-
knowledge proofs on the correctness of their inputs. Furthermore, a strong notion
of privacy for cryptographic elections, known as receipt-freeness or uncoercibility
[35] is not an issue here, as the scenario of coercing the clients to reveal (or, sell)
their private inputs does not seem realistic in the PPDM setting. In addition, the
universal verifiability requirement in online elections, where any outsider is able
to verify correctness of the final tally, can also be relaxed and replaced with a
requirement for atomic verifiability (i.e., where every participant in the protocol
is able to verify the accuracy of the results). For all these reasons, we may be
able to construct and choose among lightweight versions of some well-known
cryptographic schemes for online elections that follow the homomorphic model,
and adopt them to our PPDM setting.

2.1 Extending the Classical Homomorphic Model

In this section we look at some very efficient extensions of the homomorphic
model, where 1-out-of-L or k-out-of-L selections are allowed (e.g., [26,27]). In



288 E. Magkos et al.

this way, the overall bits of information that a database sends to the miner could
be increased, leading to new possibilities.

Multi-candidate protocols have been first investigated in [29] and further stud-
ied in [25], where the computation of the final tally grows exponentially with the
number L of candidates: Ω(

√
(C)L−1), with C being the number of clients. Bau-

dron et al [26] proposed the use of the Paillier cryptosystem [36] for conducting
homomorphic elections with multiple candidates. The Paillier scheme provides a
trapdoor to efficiently compute the discrete logarithm, thus making computation
of the tally very efficient, even for large values of C and L. They also presented a
threshold version of the Paillier cryptosystem, to be used in the election setting.
We briefly recall the Paillier cryptosystem, leaving out some complex crypto-
graphic details on the key generation and decryption functions [36]. Let N = pq
be an RSA modulus where p and q are two large primes, and g be an integer of
suitable order modulo N2. The public key is (N, g) while the secret key is the
pair (p, q). To encrypt a message M ∈ Zn, choose a random x ∈ Zn and compute
c = gMxN (modN2). The knowledge of the trapdoor (p, q) allows to efficiently
decrypt c and determine M . The reader may refer to [36,26] for further details.

The protocol in [26] is a 1-out-of-L protocol, where all the choices are in the
set (1, M, M2, ...ML−1), with M being an integer larger than the number C of
clients. A client, who wishes to select the mth candidate, encrypts her input with
the Paillier scheme, and then signs and publishes the result c = gMm

xN (modN2)
on a bulletin board. During the tallying stage, the authorities compute the “prod-
uct” of the encrypted inputs and then cooperate to decrypt the tally using thresh-
old Paillier decryption [26]. The decrypted tally can then be written in M -ary
notation: T = k0M

0 + k1M
1 + ... + kL−1M

L−1(modN), which will directly re-
veal all ki’s, where 0 ≤ ki ≤ C is the number of selections for candidate i. The
decryption process is publicly verifiable, due to the homomorphic property of
the Pallier scheme [26].

In a more recent work, Damgard et al [27] also proposed a generalization of
the Paillier cryptosystem and discussed its applicability to homomorphic elec-
tions. The size of each ciphertext in [27] is logarithmic in L, while the work for
computing the final tally is also reduced, compared with [26]. They also proposed
a threshold variant of the generalized system.

AGE

1 2 3 4 5 

[0-20) [20-40) [40-60) [60-80)  80 

0 1 0 0 0 

Bob

(23 years old) 

Alice

(Miner)

Five candidates 

Encryption of choice ‘2’ 

Fig. 1. A multi-candidate setting with 1-out-of-5 choices
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PPDM-1 Approach: Mining with 1-out-of-L Protocols. In the usual
(yes/no) setting (e.g., yes = 1 and no = 0), a client who does not want to
participate may give false information. Or, in a fully distributed setting for
example, where each client retains control of her transactions, the client may
decide not to participate, although we consider this as a privacy violation. As
a result, the null input should also be considered in homomorphic protocols.
Furthermore, knowledge cannot always be represented with yes/no decisions. For
example, a client may have to answer which group (e.g., among L age groups) her
age belongs to. These are some reasons why we are interested in multi-candidate
schemes, where in the simplest 1-out-of-L case each client makes one selection
out of L candidates. For simplicity, we assume that all questions to a database
can be reduced to a set of yes/no answers, as shown in Figure 1.

PPDM-2 Approach: Mining with k-out-of-L Protocols. 1-out-of-L pro-
tocols can easily be adapted to support up to k-out-of-L selections. An easy
generalization, with some loss of efficiency, would be to send up to k encrypted
messages [27]. Our proposal is to encode all possible L-bit numbers as separate
candidates, thus producing a set of 2L candidates. Figure 2 depicts our trivial
approach in the fully distributed setting, where the problem of allowing k-out-of-
L selections from a database record with L features is reduced to a 1-out-of-2L

multi-candidate protocol. Protocols with up to k-out-of-L selections could also
be used in a partially distributed scenario, where the full database is horizontally
partitioned into a small set of client partitions, with each client possessing R full
records of customers’ transactions. In this case, Bob would send R encrypted
messages to the miner, where R is equal to the rows of the table in his database.

Encryption of choice ‘26’ 

Thirty two candidates 

00000 

00001 

…

11010 

…

11111

0

1

…

26

…

31

Miner

Bob

(married, high income, 

no accidents, insured for 

life, no children) 

Bob’s Database 

Marital

Status

High Income 

(above 50K) 

History of 

Accidents 

Life

Insurance

Has

Children

1 1 0 1 0 

Fig. 2. A trivial way to turn a 1-out-of-L scheme into a k-out-of-L scheme

3 Reviewing the (Yang et al) Scheme

In this section we briefly describe the work in [1], which is, to our best of knowl-
edge, the first scheme that used a variant of the homomorphic election model in
order to build a privacy preserving frequency mining algorithm. This algorithm
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is then used in [1] as a building block to design a protocol for naive Bayes learn-
ing. The authors in [1] also discuss the application of this algorithm to other
data mining techniques such as decision trees and association rule mining. A
fully distributed setting is considered, where the clients’ database is horizontally
partitioned, and every client possesses her own data.

We briefly describe the PPDM protocol of [1], where a miner mines a large
number of client data sets to compute frequencies of values. Let G be a group
where the Discrete Logarithm problem is hard. All operations are done modp,
where p is a publicly known and sufficiently large prime number. In a system with
n clients, each client possesses two pairs of keys: (xi, Xi = gxi), (yi, Yi = gyi),
with g being a (publicly known) generator of the group G. Each client Ui knows
her private keys (xi, yi), with values (Xi, Yi) being the corresponding public
keys. Furthermore, the protocol requires all clients to know the values X and
Y , where X =

∏N
i=1 Xi, and Y =

∏N
i=1 Yi. Each client is able to give a yes/no

answer di to any question posed by the miner and the miner’s goal is to learn
N∑

i=1

di. In the protocol of [1], depicted in Figure 3, all clients in the system use

a variant of the ElGamal encryption scheme [37]. For correctness and privacy
analysis, please refer to [1].

Client ( iU ) Miner

ii yd

i Xgm ,
(1)

ix

i Yh

(2)
dn

i
i

i g
h

m
r

1

(3) “Brute force” r:

for nd  to1

if rg d then

        output d

Fig. 3. A schematic representation of the protocol in [1]

Observe that the computation of the tally (i.e., the result d that equals the
sum of the plaintext inputs) in the scheme of [1], as well as in the classical ho-
momorphic model of [25], involves a brute-force attack on the value gd in order
to find the discrete logarithm. This stands because there are no trapdoors to de-
termine d from gd in ElGamal variants [25]. In settings with only two candidates
(e.g., yes/no) this is a relatively easy computation, at least for a moderately
sized number of clients. However the same is not true for multi-candidate selec-
tions in large-scale systems. To address this issue, in Section 2.1 we discussed
some very efficient protocols for computing the tally in multi-candidate protocols
with very large numbers of clients.
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3.1 Weaknesses and Attacks

We briefly describe two weaknesses of the protocol in [1]. The first weakness is
a minor one and refers to the need that each client must choose new xi and
yi values after each execution of the protocol. This is actually a requirement in
every randomized encryption scheme, where new randomness is used to increase
the cryptographic security of the encryption process against chosen plaintext
attacks [33]. For example, in Figure 3, if the client Ui uses the same xi and
yi values during two successive runs, it will be trivial for an attacker (in the
semi-honest model) to find out Ui’s answers by trial and error.

The above weakness cannot be considered as an attack, since the authors in
[1] write a remark about the need for updating the (xi, yi) values. However we
rather consider this as a scalability issue: Prior to the execution of each run of
the protocol (e.g., possibly during a key setup phase) each client must obtain or
compute the numbers X and Y which are functions of the public keys (Xi, Yi)
of all system clients. In a fully distributed and large-scale scenario, where a very
large number of system clients hold their own records, it may be difficult to
pre-compute and/or publicize these values, turning the key setup phase into a
complex procedure, especially in cases where the number of participants is not
constant through different runs of the system.

A DOS Attack. We also discuss a second weakness of the scheme in [1], which,
under preconditions, could lead to a Denial Of Service (DOS) attack. We are
unaware of any mention of this attack in the literature, and therefore briefly
describe it here. We argue that a single client may be able to disrupt the system.
Indeed, in a system with say three clients U1, U2, U3, let us assume that U2 does
not send her input, because of a system crash. Then the protocol executes as in
Figure 4 and a result cannot be found.
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yd
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x
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Fig. 4. A run with two active clients in a system with three registered clients

One could argue that in the semi-honest threat model, all clients will adhere
to the protocol specification and will not abstain from the protocol, however this
is an unrealistic assumption, especially in large-scale protocols (e.g., 10000 was
the number of clients used in the experimental results in [1]). Furthermore, the
semi-honest model does not preclude non-malicious system crashes or network
failures. Observe that a client does not know a priori who will participate in the
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protocol, so the obvious fix of constructing the values X and Y as a function of
the number of active participants will not work.

4 A Generic Random Forests (RF) Classifier

4.1 Introducing Standalone RF

Nowadays,numerousattempts inpresentingensembleof classifiers towards increas-
ing the performance of the task at hand have been introduced. A plethora of them
has portrayed state-of-the-art results in terms of precision and recallmeasures. Ex-
amples of such techniques are Adaboost, Bagging and Random Forests [38].

Random forests [39] are a combination of tree classifiers such that each tree
depends on the values of a random vector sampled independently and with the
same distribution for all trees in the forest. The generalization error of a forest
of tree classifiers depends on the strength of the individual trees in the forest
and the correlation between them. Using a random selection of features to split
each node yields error rates that compare favorably to Adaboost, and are more
robust with respect to noise. While traditional tree algorithms spend a lot of time
choosing how to split at a node, Random Forests put very little effort into this.
Compared with Adaboost, Random Forests portray the following characteristics:

1. The accuracy is as good as Adaboost and sometimes better.
2. They are relatively robust to outliers and noise.
3. They are faster than bagging or boosting.
4. They provide useful internal estimates of error, strength, correlation and

variable importance.
5. They are simple and easily parallelized.

A random forest multi-way classifier Θ(x) consists of a number of trees, with
each tree grown using some form of randomization. The leaf nodes of each tree
are labeled by estimates of the posterior distribution over the data classes. Each
internal node contains a test that best splits the space of data to be classified. A
new, unseen instance is classified by sending it down every tree and aggregating
the reached leaf distributions. The process is depicted in Figure 5:

Randomness can be injected at two points during training: in sub-sampling the
training data so that each tree is grown using a different subset; and in selecting
the node tests. In our approach, we shall discuss the former situation, and argue
that using privacy preserving protocols in randomly selected instance vectors
supports the creation of robust RF, thus allowing for effective Data Mining in
horizontally-partitioned data sets. For vertically partitioned type of partitioned
data, the latter approach needs to be taken into consideration. However, for the
time-being this is out of the paper’s scope.

4.2 Privacy-Preserving RF for Horizontally Partitioned (HP) Data

By the term horizontally partitioned data, we mean that parties (≥ 3) collect
values from the same set of features but for different objects. Their goal is to
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Fig. 5. Hierarchical decomposition of an RF classifier on a non-distributed data set

find an improved function for predicting class values of future instances, yet
without sharing their data among each other. Thus, we enroll a collaborative
approach where data need to be shared in a secure manner, and the final model
will predict class labels without knowing the origin of the test instance. Similar
to previous approaches such as [20], classification is performed individually, on
each party’s site, but the main contribution on the field is that during training,
data from other parties are used in order to enhance randomness, thus increase
the obtained classification accuracy. However, an assumption needs to be taken
into account: data are sharing a common distribution. For example, suppose
we have three different bank institutions, sharing financial information on their
customers in a HP manner (e.g., they all use features such as age, occupation,
income, marital status and sex ). In order to have a robust RF classifier, data
has to follow a similar distribution among banks, meaning that if one bank owns
data on a specific group of customers (e.g., professors) and the others own data
about a totally different group (e.g., farmers), the obtained accuracy would be
severely deteriorated. We exploit the two strengths of RF i.e., randomness and
voting. The former deals with the issue of premature termination of the tree
learning process while the latter confronts data sparseness problems in an effec-
tive manner. In this work, we shall provide a protocol that allows for injecting
randomness into trees during learning and allow voting over the majority class
among all parties at classification time. More specifically, we shall discuss Ran-
dom Input Forests (RI) learning from HP data sets abd using the forest structure
to classify previous unseen test instances originating from one of the distributed
database parties. Prior to this analysis, an introduction to Out-Of-Bag (OOB)
selection of samples is included.

OOB Estimates to Monitor Error, Strength, and Correlation. Out-
of-bag samples for tree Ti in a forest are those training examples that are not
used to construct tree Ti. As [39] portrayed, they give unbiased estimates of
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error on future data, since we do not need to use cross validation. Furthermore,
oob samples enhance internal strength and correlation. By strength, we denote
the notion of a tree being able to be a fairly good model on its own. Correlation
among trees is related with the fact that errors are canceled out between different
trees. Therefore, our framework uses the following procedure: Each new training
set is drawn, with replacement, from the training set of the other parties. Then
a tree is grown on the new training set using random feature selection. The trees
grown are not pruned. Exact measures of strength and correlation are described
in [39,40] and will not be explained so forth.

4.3 Random Input Forests

Our privacy-preserving protocol for training random forests at each party by
inserting randomness from different ones is consisted of two distinct phases. At
the former one, each party is collaborating using the procedure proposed by
[20], in order to collect the whole set of available values per each attribute. This
knowledge is particularly important for the next phase, where each party will
require a certain number of instances from the others (again, we note that more
than three parties are needed). The complete algorithm is as follows:

Each party selects K trees to grow :

– Build each tree by:
• Selecting, at random, at each node a small set of features (F ) to split on

(given M features). From related research, common values of F are:
1. F = 1
2. F = log2(M) + 1

F is held constant while growing the forest. Create a random instance
based on the values of the complete feature set and ask the other parties
to vote if they own it. (based on the afore-mentioned PPDM approach).
Since F is significantly smaller that M , the number of candidate in-
stances that each party will create is computationally efficient to be
handled by the PPDM approach.

• For each node split on the best of this subset (using oob instances)
• Grow tree to full length. There is no pruning.

To classify an unseen, new instance X, collect votes (again using the PPDM
approach) from every tree in the forest of each party and use general majority
voting to decide on the final class label.

5 Conclusions

In this paper we discussed privacy issues in distributed data mining and argued
in favor of borrowing knowledge from a broad literature dealing with crypto-
graphic elections via the Internet. The goal is to use efficient cryptography in
order to perform privacy preserving data mining in statistical databases, while
maintaining the accuracy of the results. We proposed a PPDM approach based
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on recent homomorphic schemes for multi-candidate elections [26,27] in order to
cryptographically protect privacy in large-scale distributed data mining applica-
tions, without sacrificing scalability and efficiency. We reviewed a recent scheme
[1] that used a variation of the classical homomorphic model [25] for online elec-
tions, discussed some weaknesses and described a security attack. Furthermore
we proposed the use of the PPDM approach as a building block to obtain a Ran-
dom Forests classification algorithm over a set of homogeneous databases with
horizontally partitioned data. The introduction of a privacy preserving classifier
from the domain of ensemble classifiers is a novelty of this work since such ap-
proaches have presented the most promising results as regards to precision and
recall measures in real-world Data Mining applications.

We believe that research in cryptographic PPDM must be continued and
practical solutions that balance the tradeoff between efficiency and security must
be sought. More particularly, further research on cryptographic PPDM should
take into account the various kinds of databases to work with, as well as the
various data mining technologies that need to be supported.
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Abstract. Many organizations capture personal information, but the
quantity of records needed to detect statistically significant patterns is
often beyond the grasp of a single data collector. In the biomedical realm,
this problem has pressed regulatory agencies to require funded investi-
gators to share research-derived data to public repositories. The chal-
lenge; however, is that shared records must not reveal the identity of
the subjects. In this paper, we extend a secure framework in which data
holders contribute and query encrypted person-specific data stored on a
third party’s server. Specifically, we develop protocols that enable data
holders to merge personal records, thus creating larger profiles and di-
minishing duplication. The repository administrator can merge records
via encrypted identifiers without decrypting or inferring the contents of
the joined records. Our model is more practical than prior secure join
methods because each data holder needs only a single interaction with
the central repository. We further present an extension to the protocol
that permits the revelation of k-anonymous demographics, such that the
administrator can perform joins more efficiently with the guarantee that
each record can be linked to no less than k individuals in the popu-
lation. We prove the privacy preserving features of our protocols and
experimentally evaluate their efficiency in a real world Census dataset.

1 Introduction

The tensions between data sharing and data privacy are felt in many environ-
ments. In this paper, we focus on recent issues in the biomedical community,
which illustrates real policy and technology challenges, but also opportunities
for solutions. Consider, in the United States, the National Institutes of Health
(NIH) expects the timely sharing of final research data from investigators re-
ceiving $500,000 or more in any year of an NIH-funded grant [1]. The goal is to
facilitate the dissemination of data generated with NIH funds for use by other
researchers. More recently, the NIH recognized that the integration of infor-
mation technology into healthcare, in combination with the decreasing cost of
DNA sequencing and storage technologies, has enabled the collection of detailed
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patient-specific health and genetic data [2]. Thus, in its policy for genome wide
association studies (GWAS), the NIH specifies that all data derived through
NIH-funded GWAS studies, whether it be DNA sequences or information de-
rived from an individual’s medical record, must be shared to an NIH-managed
centralized repository [3]. These are noble endeavors, designed to facilitate infor-
mation reuse, but they are challenging because, at the same time, investigators
must ensure that the anonymity of their subjects is not compromised. Failure
to do so will have adverse legal and social consequences that significantly harm
public support of biomedical research. It is important to recognize this problem
is not unique to the United States. Across the globe, organizations are working to
integrate person-specific DNA and clinical information from disparate facilities
in the hopes of generating statistically significant research results [4,5,6].

In earlier work, we began to address this challenge with the introduction of
a privacy enhancing framework that permits data holders to submit and query
biomedical data housed in a centralized repository managed by a third party
[7]. The framework enables data holders to store person-specific data, such as
DNA sequences, on a third party’s server in an encrypted format. The crypto-
graphic basis of the framework is homomorphic, which enables the third party
to execute queries for researchers, such as count queries, without decrypting the
records. For example, a researcher can ask “How many DNA sequence contain
pattern X?” and, while the third party will learn the result (i.e., the fraction
of records that satisfy the criteria), it cannot learn which records satisfied the
criteria.

The knowledge gained through count queries; however, does not support
certain biomedical applications. For instance, in the healthcare realm, patients
are mobile and their data can be collected by multiple locations, such as when a
patient visits one hospital for primary care and a second hospital to participate
in a clinical trial [8]. To facilitate robust biomedical investigations and prevent
duplication of entries, it is beneficial to merge data that corresponds to the
same patient. In traditional databases, such merges are achieved through joins
on common attributes. The framework presented in [7]; however, is based on
semantic security, so equivalent identifiers will appear different after encrypted.
Therefore, we need to develop a new protocol to achieve join queries.

We exploit the fact that many organizations, such as healthcare providers,
collect identifying information on their consumers. For instance, it is common
for hospitals to use a patient’s Social Security Number (SSN) and/or demo-
graphics for administrative purposes [9,10]. Such identifiers have been validated
as excellent keys for data merging [11], but their disclosure is strictly prohib-
ited by most organizations’ policies and federal regulations. Despite restric-
tions, we can share SSNs, and other identifiers, in an encrypted manner for
data merging purposes when the encryptions are semantically secure [12]. In
this paper, we demonstrate how to join patient-specific identifiers within an ex-
isting encrypted framework. Moreover, by utilizing the concept of k-anonymity
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[13,14], we propose an approach to speed up encrypted joins by revealing person-
specific specific features to limit the number of potential joins that must be
evaluated.

The rest of the paper is organized as follows: Section 2 highlights the existing
work that is most related to the protocols proposed in this paper, including an
overview of our secure framework. In Section 3, we develop a secure equi-join
procedure within the context of the framework. Then, in Section 4 presents a
more efficient protocol using data k-anonymization techniques. Section 5 pro-
vides an empirical analysis of the protocol with a real world Census dataset.
Section 6 discusses some lessons learned, and Section 7 concludes the paper.

2 Related Work

To date, several generic privacy preserving data integration frameworks [15,16]
have been proposed. These frameworks generally involve three basic privacy-
preserving components: 1) schema matching, 2) joins, and 3) query processing.
For the most part, research has been performed to address specific challenges
in each component. For example, in [17], a cryptographic protocol for schema
matching has been proposed. In addition, several equality joins have been pro-
posed in the past for different settings [18,19,20,21]. Usually, these protocols
involve expensive cryptographic operations and they are not directly scalable
for large data sets. To enable more efficient solutions, hash-based noise addition
techniques [22] and anonymization based approaches have been [23] proposed.
Compared to previous work; however, the protocols we introduce in this paper
require participants to have only single interaction. Also, in our work, we en-
able each data holder’s records to be incrementally added to the central data
repository.

In prior work, we introduced a framework to support integration and
querying of a database of encrypted genomic sequences and affiliated patient-
specific data [7]. The goal of the framework is to enable 1) the secure transfer
and centralized storage of person-specific DNA sequences in a database and 2)
the support queries and data mining tasks as they would be performed on the
original sequences. To achieve these goals, the framework incorporates four types
of participants: data holders, data users, a data site, and a key holder site. As a
running example, imagine that the set of data holders are hospitals and that the
set of data users are biomedical researchers. We assume each hospital maintains
some demographic information (e.g., sex, age), clinical information (e.g., medical
diagnosis), and DNA records. We further assume that the participants do not
collude and are semi-honest [24], such that all participants can use information
they observe to infer knowledge, but they do not deviate from the framework’s
specification. The data site (DS) and key holder site (KHS) are crucial to the
security components of the architecture. Specifically, KHS manages the keys
that encrypt patient information and queries and the keys to decrypt the query
results. In contrast, the encrypted DNA and patient data is stored and processed
at DS. We summarize the participants’ roles and the framework in Appendix A.
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3 Secure Queries and the Equi-Join

We focus on how to execute equi-join queries on the encrypted data stored at
DS. Such queries are necessary for adding and integrating new datasets to the
database already stored at DS. Here, we present a novel protocol to perform se-
cure equality joins, termed as Secure-Equijoin, and applicable to non-interactive
environments with independently encrypted attributes. The proposed protocol
uses the Paillier cryptosystem (key properties are presented in Appendix B).

We adopt the following notation for this paper: θh = {θh
1 , . . . , θh

α} is dataset of
α records in relational form, where each row (e.g., θh

i ) indicates an individual’s
data. θh

ij represents the value of the jth attribute of the ith individual in θh. Epk

and Dpr respectively are the Paillier’s encryption and decryption functions with
public key pk and private key pr. θh1 �� θh2 indicates the join of datasets θh1

and θh2 on common attributes (e.g., encrypted primary key).
Protocols 1 and 2 depict the pseudo-code of Secure-Equijoin as executed by DS

and KHS, respectively. We assume a patient’s record in a database is associated
with identifying attributes, such as Social Security Number (SSN) or various
demographics. The Secure-Equijoin is initiated by a hospital to encrypt the
tuples in its database, θh1 , which is then sent to DS. After receiving encrypted
tuples from two hospitals, Epk(θh1) and Epk(θh2), DS calculates θh1 �� θh2 .

To evaluate the equi-join, DS securely calculates if two encrypted records
are equivalent. Without loss of generality, we assume the join is performed using
attributes j1 . . . jm. Let θh

ij be the value of the jth attribute of ith tuple of θh. DS
must inspect whether two encrypted tuples Epk(θh1

i1
) and Epk(θh2

i2
) match. Using

the homomorphic properties of Paillier encryption, DS checks if
(
θh1

i1j1
= θh2

i2j2

)
∧

· · · ∧
(
θh1

i1jm
= θh2

i2jm

)
is true by checking if Mi1,i2 =

∑m
v=1

(
θh1

i1jv
− θh2

i2jv

)
· rv =

0 mod n, where r1, . . . rm are non-zero random values. DS calculates Epk(Mi1,i2)
on encrypted data via evaluating:

Epk(Mi1,i2) = (+h)m
v=1

[(
Epk(θh1

i1jv
) +h (Epk(θh2

i2jv
)×h (−1))

)
×h rv

]
When the decrypted value of Epk(Mi1,i2) is 0, then two records correspond to
the same patient with high probability. The main reason behind this observation
is the fact that if all the attributes match then for each v, (θh1

i1jv
− θh2

i2jv
) = 0,

and then Mi1,i2 is 0. As proven below, if any of the attributes fail to match then
it is highly unlikely that Mi1,i2 is 0.

3.1 Correctness of Equi-Join Protocol

Here, we prove that Mi1,i2 = 0 gives the correct join result with high probability.
We first derive a lemma that states the probability of computing a 0 through
homomorphic addition, when there is at least one non-zero value, is very low.

Lemma 1. Given fixed a1, . . . , am ∈ {0, . . . , n − 1} with at least one non-zero
aj value and uniformly randomly chosen r1, . . . , rm ∈ {1, . . . , n− 1}. Let Sm =∑m

i=1 ai · ri mod n, then Pr[Sm = 0] ≤ 1
n−1 .
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Algorithm 1. DS-Equi-Join

Require: Encrypted datasets Epk(θh1) and Epk(θh2); j1, . . . , jm are join attributes
1: for all Epk(θh1

i1
) ∈ Epk(θh1) do

2: for all Epk(θh2
i2

) ∈ Epk(θh2) do
3: for v = 1 to m do
4: Ev ←

(
Epk(θh1

i1jv
) +h (Epk(θh2

i2jv
) ×h (−1))

)
×h rv

5: end for
6: Epk(Mi1,i2) ← E1 +h E2 +h . . . +h Em

7: end for
8: end for
9: Send all permuted Epk(Mi1,i2) values to KHS

Algorithm 2. KHS-Equi-Join
Require: Epk(Mi1,i2)’s from DS
1: for all Epk(Mi1,i2 do
2: if Dpr(Mi1,i2) = 0 then
3: (i1, i2) matches
4: end if
5: end for
6: Send all matching (i1, i2) pairs to DS

Proof. Let us assume aj is not equal to zero (it exists due to the initial as-
sumption) and all operations are modulo a large prime n.1 Given any x ∈
{0, . . . , n− 1}, we can easily state the following inequality:

Pr[aj · rj = −x] = Pr[rj = −x · (aj)−1] =
{

0, x = 0
1

n−1 , else ≤ 1
n− 1

Using the above inequality, we have: Pr[Sm = 0] =
∑n−1

x=0(Pr[aj · rj = −x|Sm−
aj · rj = x] · Pr[Sm − aj · rj = x]). Thus, for any x, Pr[aj · rj = −x] ≤ 1

n−1 ,

Pr[Sm = 0] ≤ 1
n− 1

(
n−1∑
x=0

Pr[Sm − aj · rj = x]

)
(1)

Since all operations are modulo n, Sm − aj · rj will only takes values between
{0, . . . , n− 1}, this implies that:(

n−1∑
x=0

Pr[Sm − aj · rj = x]

)
= 1 (2)

1 To uphold protocol security, we recommend choosing values of n, the modular base,
on the order of 1024 bits. If, for instance, we join two tables with 10 million tuples
each, the expected number of mismatches is significantly smaller than one (i.e.,
107.107

21024−1 ). Thus, for any database with the less than 2512 tuples, the error introduced
by our scheme can be made arbitrarily small by increasing size of n.
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Equations (1) and (2) concludes our proof. �

Lemma 1 provides intuition regarding the general properties of homomorphic
addition. In the context of our protocol, this lemma can be used to prove The-
orem 1. Basically, assume that we use homomorphic encryption to subtract the
two patients’ values in the same attribute (e.g., date of birth). Then, if the
values match, the homomorphic subtraction will be a random value, or a false
non-match with very low probability.

Theorem 1. Given two encrypted tuples Epk(θh1
i1

) and Epk(θh2
i2

), if θh1
i1

and θh2
i2

matches, then Mi1,i2 = 0 (Mi1,i2 is defined as above); on the other hand, if
Mi1,i2 = 0 then θh1

i1
and θh2

i2
matches with probability at least 1− 1

n−1 .

Proof. Due to the definition of Mi1,i2 , if θh1
i1

and θh2
i2

matches then for all v,(
θh1

i1jv
− θh2

i2jv

)
= 0. This implies that Mi1,i2 = 0. Let us consider the case where

Mi1,i2 = 0 but θh1
i1

and θh2
i2

does not match. This implies for some non-zero

av =
(
θh1

i1jv
− θh2

i2jv

)
values,

∑m
v=1 (av · rv) = 0 mod n for non-zero uniformly

randomly chosen rv ∈ {1, . . . , n− 1}. According to Lemma 1, the probability of
such an event is less than 1

n−1 . This implies that if Mi1,i2 = 0 then two tuples
match with probability bigger than 1− 1

n−1 . �

3.2 Security of the Equi-Join Protocol

The protocol is secure within the framework with respect to DS because it does
not have access to the private keys. In addition, due to semi-honest model, we
assume that DS follows the protocol and only asks KHS for the decryption for
the properly constructed Epk(Mi1,i2) values. Thus, we consider security with
respect to KHS. Specifically, KHS observes only encrypted values of either 0,
which corresponds to a match, or a random value, which corresponds to a non-
match. Since the encryption scheme is semantically secure, KHS cannot learn
anything regarding the corresponding values of the encrypted data.

3.3 Communication and Computational Cost

Assume Secure-Equijoin is performed using m attributes, and let |θha | indicate
the number of tuples in θha . According to Protocol 1, for each tuple pair, we
perform 2m − 1 homomorphic additions, m modulo inverses and m homomor-
phic multiplications. Since each homomorphic multiplication is equivalent to an
exponentiation, which is much more expensive than the other operations, we
define the computational complexity in terms of the number of exponentiations.
Each tuple pair requires m exponentiations and there are |θh1 | · |θh2 | such pairs;
as a result, the number of exponentiations for the Secure-Equijoin protocol is
bounded by O(|θh1 | · |θh2 | ·m).

For each tuple pair, DS sends the Mi1,i2 value to KHS. Assuming an s-bit
long n value, the communication complexity is bounded by O(|θh1 | · |θh2 | · s).
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4 k-Anonymity for Secure Equi-Join

The Secure-Equijoin protocol is impractical with large datasets because it re-
quires testing each new and existing record as a potential join, such that the run-
ning time increases quadratically with the number of tuples. To overcome this
limitation of the protocol, we propose a method that relaxes the semantically
secure protections afforded by the homomorphic cryptosystem to anonymity sets
of size k. We append non-encrypted patient-specific values (e.g., demographics)
to encrypted data (e.g., DNA) in a manner that satisfies a formal privacy model.
Specifically, hospitals disclose non-encrypted patient-specific data in a manner
that satisfies k-anonymity (basic properties are presented in Appendix C).

4.1 k-Anonymity as Hash Key

In essence, k-anonymized values serve as hashed keys by which DS can partition
encrypted tuples into buckets that are much smaller than the number of tuples
in the database. In doing so, DS can perform the secure equi-join procedure on
the homomorphically encrypted identifiers, such as SSNs, without testing every
combination of tuples in the cross-product of the submitted databases. Moreover,
by k-anonymizing the data, we ensure that every tuple in a bucket is linkable
to no less than k patients. Thus, after joining encrypted values, DS is unable
re-identify a tuple to less than k patients.

To implement this model, we assume the hospitals’ databases contain a com-
mon set of quasi-identifying attributes, such as a patient’s residential zip code
and age. Each hospital encrypts all remaining attributes via the public key
of DS. The hospitals then k-anonymize the quasi-identifying values of their
datasets.

4.2 Joins with Equivalent Populations

First, we consider the case when all hospitals have data on the same popula-
tion. In this scenario, each hospital k-anonymizes its dataset (with the same
anonymization algorithm, k values and generalization schema) and submits the
result to DS. When DS performs a join, it constructs buckets corresponding
to each combination of k-anonymous values. For each bucket, DS executes the
Secure-Equijoin protocol. At the completion of the protocol, every tuple from
each location will be joined with data stored at DS.

Claim. The joined database resulting from Secure-Equijoin at DS is k-anonymous
with respect to the attributes in the quasi-identifier.

Proof Sketch. The union of the joined quasi-identifying values is equivalent to
the quasi-identifying values of any tuples involved in the join. Since there are k
or more tuples in each bucket, after all tuples are joined with their correspond-
ing partners, their quasi-identifying values do not change. Thus, the resulting
database is k-anonymous. �
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4.3 Joins with Overlapping Populations

Next, we address how to join data when hospitals collect records on overlap-
ping populations of patients. In this case, hospitals cannot k-anonymize their
databases independently, as was performed in the prior section. If this occurs,
the same patient’s data can be k-anonymized in different ways at different hospi-
tals. As a consequence, data that is joined at DS could violate the k-anonymity
model. For instance, consider the record {25, 47906} defined over the attributes
AGE and ZIP CODE and the generalization hierarchies in Figure 3 (See Ap-
pendix C). This tuple could be k-anonymized to {[23, 45], 479∗∗} at one hospital
and {25, 47 ∗ ∗∗} at another hospital. In each submitted database, the tuples are
k-anonymous, however, after joining the encrypted values, DS can infer that the
corresponding demographics must be {25, 479 ∗ ∗}, which is more specific than
both of the submitted tuples. If the number of tuples with the combination of
these demographic values is less than k, then the join violates k-anonymity.

Algorithm 3. k-Equijoin
Require: k: anonymity threshold; V1, . . . , Vm: a set of value generalization hierarchies

1: DS: Send T [Q] to hospital h
2: Hospital h:

(1) Compute C ← Get-Candidate(T h, T [Q], V1, . . . , Vs)
(2) Anonymize C based on T [Q] and send C to DS

3: DS: Compute C′ ← Equi-Join(C, T ) and send C′ to hospital h
4: Hospital h:

(1) Compute Γ ← (T h − C) ∪ C′

(2) k-anonymize Γ and send it to DS

To prevent this inference leak, we present a protocol that enables hospitals
to coordinate and, subsequently, ensure all data stored at DS satisfies the k-
anonymity framework. We call this protocol k-Equijoin and its key steps are
presented in Protocol 3. Before delving into the details of the protocol, we provide
an informal overview. Let T represent the database stored at DS. We partition
T into T [Q] and T [Q̂]. The first component, T [Q], represents the projection of T
on the quasi-identifier attributes. The second component, T [Q̂], represents the
encrypted portion of T . Similarly, data at hospital h is represented as T h[Q]
and T h[Q̂]. To initiate the protocol, h submits a request to DS to transfer its
patient-specific records. At this point, we must consider two scenarios: 1) a base
case in which h is the first hospital to submit data and 2) a general case in which
h is not the first submitter. In the base case, DS has yet to receive data from any
hospital, so h will k-anonymize the quasi-identifying attributes in its database
and encrypt the remaining attributes. Then, h will send T h to DS for storage.
In the more general case, DS has already received and stored data from one or
more hospitals. So, hospital h partitions his data into records that DS: 1) may
have already received from other hospitals and 2) definitely has not received.
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Hospital h will k-anonymize the first set of records in the same schema as they
were submitted to DS by other hospitals. The second set of records, which we
call Γ , can be k-anonymized by h without regard to records at DS because they
are the first to be to submitted. Thus, h generates and sends Γ [Q] to DS.

Now, we present the protocol more formally. To produce consistent data, the
degree of k-anonymization and the generalization algorithms are fixed for the
execution of the protocol. In addition, we assume there exists a fixed set of value
generalization hierarchies available to the hospitals. Without loss of generality,
we assume that some data is already stored at DS. k-Equijoin utilizes a function
called Get-Candidate to produce a set of data tuples in T h whose projection
on quasi-identifier attributes can be anonymized to some tuples in T [Q]. For
example, let V1 and V2 be the value generalization hierarchies (VGHs) presented
in Figure 3 (Appendix C), which correspond to the attributes AGE and ZIP
CODE. Using set representation, let t = {[46, 90], 475 ∗ ∗} be one of the records
in T [Q]. Based on the two VGHs and t, we compute a set γ such that any value in
γ can be generalized to some value in t based on the given VGHs. Consequently,
given t, γ = {50, 53, 70, 75, 80, 47500, 47535}. Suppose th = {50, 54339} is one
of the records in T h[Q]. Since th � γ, th cannot be generalized to t. On the
other hand, if th = {50, 47500}, then th can be generalized to t, and th is called
a candidate for the future join process at DS. The set C contains all possible
candidates computed according to T [Q] and VGHs.

In Step 1 of k-Equijoin, DS sends the k-anonymous portion of the centralized
database to hospital h.2 Next, in Step 2, h computes the set of its tuples that
could potentially join to tuples in the centralized database at DS. Then, h k-
anonymizes his local database T h[Q] and sends the k-anonymized portion along
with the corresponding encrypted portion to DS. Then, in Step 3, after DS
receives C, DS will locate the tuples in C that can potentially join to its data
using the Secure-Equijoin protocol. After this computation, DS notifies hospital
h which tuples can definitely not be joined with existing records, denoted as the
set C′. Finally, in Step 4, h k-anonymizes the remaining tuples with those in C′,
and sends the k-anonymized tuples to DS.3

Claim. The database at DS after all hospitals execute k-Equijoin is k-anonymous
with respect to the attributes in the quasi-identifier.

Proof Sketch. Tuples that can be joined successfully at DS do not violate k-
anonymity. Since hospital h locally k-anonymizes the other data tuples (denoted
as Γ in Algorithm 3), these tuples create new buckets at DS. Each of the new
buckets contains at least k tuples and each tuple in the new buckets do not
violate k-anonymity. Similarly, the extension of this protocol to all hospitals

2 Note, before sending T [Q], DS can eliminate all duplicates in T [Q] to reduce com-
munication costs at least by k times.

3 Note that a small number of tuples may not be k-anonymized. When this occurs, h
will not send these tuples to DS. However, these data can be combined with future
collected data. If the size of combined data is greater than k, h can initiate k-Equi-
Join protocol again with DS.
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preserves the k-anonymity criteria. When multiple locations submit their data
to DS, the k-Equijoin protocol is executed sequentially; i.e., hospital 1 executes
the protocol, followed by hospital 2, and so on. Each execution of the k-Equijoin
protocol with a new hospital preserves the k-anonymity of the database at DS.
Since each execution of the protocol preserves the k-anonymity criteria, the final
database at DS must be k-anonymous as well. This holds for all hospitals and
the database at DS that results from the sequential execution of k-Equijoin must
satisfy k-anonymity. �
We hypothesize that k-Equijoin will reduce the number of cryptographic match
evaluations that DS must perform in comparison to the Secure-Equijoin protocol
because tuples corresponding to the same patient must reside in the same bucket.
We experimentally investigate this hypothesis below.

5 Experiments

To evaluate the proposed protocols, we selected the U.S. Census income dataset,
which is publicly available on the UC Irvine Machine Learning Repository [25].
This dataset contains person-specific records that were extracted from the 1994
and 1995 Current Population Surveys. It contains 286,775 tuples without missing
values. There are 40 demographic and employment-related attributes.

5.1 Secure-Equijoin

We prototyped our protocols in Java and executed the secure join query experi-
ments using relations of 100, 200, 300, and 400 tuples extracted from the Census
income dataset. Please note that for relations of size 100, we need to do compare
10000 tuple pairs. Similarly for data set size 400, we need to compare 160000
tuple pairs. For simplicity, we executed join queries of the form θh1 �� θh1 with
different numbers of attributes in the equi-join criteria. The experimental results
are summarized in Figure 1 and indicate that join queries are computationally
expensive and thus very time consuming. As expected, the running time of the
join protocol increases linearly with the number of attributes in the join and
quadratically with the size of the relation. For instance, it took around an hour
to compute an integration of two datasets with 100 patients each (i.e., a join
operation that involves 10000 tuple pair comparisons) across four attributes.

From a practical perspective, we investigated the degree to which special-
ized software implementations could decrease the time necessary to complete
secure equi-joins. We simulated the homomorphic encryption-decryption func-
tion in the C programming language with the GMP library. Our results indicate
that we can achieve an order of 10 speed-up. This implies that we can com-
plete two million tuple pair comparisons in less than a day, which may be an
acceptable amount of time for some biomedical research queries. Yet, as the size
of the database grows, the savings afforded by specialized code is significantly
outpaced by the increased time required to evaluate possible tuple pairs in the
homomorphic space. Thus, scaling the basic join protocol to large datasets is not
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Fig. 1. Execution Time for Join Queries

feasible for the large databases that will be employed in biomedical data mining
endeavors.

5.2 k-Equijoin

To evaluate the effect of k-anonymous demographics on secure joins, we applied
the Datafly [26] algorithm, which generates k-anonymous datasets through gen-
eralization hierarchies using a greedy heuristic. We selected 4 of the 40 attributes
in the dataset to represent the quasi-identifier (i.e., the generalizable attributes).
Table 2 summarizes the statistics regarding the k-anonymous income dataset
with k equal to 5, 10, 15, and 20. To orient the reader with respect to the results
in this table, let θh1 refer to the income dataset and θh2 refer to a particular hos-
pital’s dataset. Table 2 can be interpreted as follows: given k = 20, ∀θh2

i2
∈ θh2 ,

the expected number of tuples in θh1 that potentially match θh2 is 196. In other
words, when the quasi-identifying attributes of θh2 is 20-anonymous, the aver-
age number of exponentiations is bounded by 196 · |θh2 | instead of |θh1 | · |θh2 |,
which occurs when we do not apply k-anonymity. This result implies that for
|θh1 | = 286, 775 and |θh2 | = 1000, by applying k-anonymity, we can reduce
the number of exponentiations needed from 286, 775, 000 = 286, 775 · 1000 to
196, 000 = 196 · 1000. We have increased efficiency by almost 1500! Thus, we
have confirmed our hypothesis that when k is not large, the number of secure
equality checks required by the equi-join protocol can be reduced drastically.

6 Discussion

The limiting factor in the applicability of our join protocols is the compu-
tational power needed for exponentiations and the bandwidth necessary for
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Table 1. Census Dataset Description

Attribute Values VGH Height

Age 91 5
Marital Status 7 3

Race 5 2
Sex 2 2

Table 2. Anonymization Statistics

k Min Max Avg Med Std

5 5 1964 122 19 313
10 10 1964 150 30 341
15 15 1964 174 41 363
20 20 1964 196 51 379

communication between the data site (DS) and key holder site (KHS). We believe
that our protocols will be more efficient when implemented in secure computer
hardware. Here, we suggest several potential hardware-based improvements.

First, significant efficiency gains for our protocols can be achieved through
cryptography accelerators that are tailored to execute expensive exponentiation
operations. Based on reported results with hardware accelerators , the com-
bination of more efficient software implementations (e.g., in the GMP library
of the C language) with hardware accelerators could substantially decrease the
time needed to complete an exponentiation in comparison to our Java-based
experiments. This implies that secure joins of relations, without the use of k-
anonymous keys, on databases of 10,000 could be achieved in less than a day.
We leave the implementation of our algorithms using crypto accelerators as a
future work.

Second, we can decrease the communication cost by co-locating KHS and DS.
Specifically, we envision a system in which the functions of the KHS are performed
bya secure co-processor that resideson the same server asDS.A secure co-processor
is a single-board computer consisting of a CPU, memory and special-purpose cryp-
tographic hardware contained in a tamper-resistant shell; certified to level 4 un-
der FIPS PUB 140-1 (One example of such a secure co-processor is the IBM 4758
Cryptographic co-processor [27]). When installed on the server, it is capable of per-
forming local computations that are completelyhidden fromthe server. If tamper is
detected, the secure co-processor clears the internal memory. The implementation
of KS functionality through a secure co-processor on the same machine as DS will
decrease the communication cost.

7 Conclusions

In this paper, we presented a framework by which person-specific biomedi-
cal data can be stored and queried in a centralized encrypted repository. We
demonstrated that the administrator of the repository can perform joins of en-
crypted databases without decrypting or inferring the contents of the joined
records. Furthermore, we presented an efficient extension to the join protocol
that reveals patient-specific demographics in a manner that satisfies a formal
privacy model, i.e., k-anonymity. In doing so, we allow the administrator to
perform efficient joins with the guarantee that each record can be linked to
no less than k patients in the population. This research is notable in that it
demonstrates how centralized biomedical data repositories can be integrated and
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updated with data distributed healthcare organizations without violating pri-
vacy regulations. In future research, we intend to implement this research in real
world settings and extend it to secure computer architectures, such as secure
coprocessors.
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A Secure Architecture

The join protocols proposed in this paper are based on a secure framework [7].
To orient the reader, we briefly walk through the framework and describe the
cryptographic mechanisms. Figure 2 summarizes the system.

Step 1 (Key Generation). KHS generates a <public, private> key pair and
provides DS with the public key.

Step 2 (Data Encryption). Hospitals encrypt their records using the public
key and send the results to DS.

Step 3 (Query Issuance). After the data is encrypted and stored at DS, a
researcher sends a query for the database to DS.

Step 4 (Query Processing). DS executes the requested query and sends the
encrypted results to KHS.

Step 5 (Result Decryption). KHS decrypts the result using the private key
and sends it to the biomedical researcher.

http://www.ibm.com/security/cryptocards/html/pcicc.shtml
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We demonstrated that the framework supports aggregation queries, which are
crucial to biomedical data mining tasks. Specifically, we proved that, through
the homomorphic properties of Pallier encryption, we can execute count queries
without revealing anything other than the query result. We would like to stress
that our proposed system is secure under semi-honest model [24]. In the semi-
honest model, the participating parties (e.g., KHS and DS) are assumed to fol-
low the prescribed protocol and those parties only try to infer private informa-
tion by using what is revealed during the protocol execution. In our context,
semi-honest model implies that DS only asks KHS to decrypt encrypted query
results as prescribed by the protocol. The semi-honest model, widely used in
many different data mining tasks, is realistic for our purposes because chang-
ing complex protocols buried into large software without being detected could
be hard. In addition, due to legal concerns, owners of the DS and KHS may
not be willing to accept the potential liability of “not following the prescribed
protocols”.

Data stored at DS is semantically secure, so DS can learn the actual values
only with the corresponding private key. However, KHS only issues DS a public
key. KHS keeps the private key secret and does not share it with DS. As a
result, DS is unable to discover the original patient information. Therefore, the
data stored at DS are inherently secure against DS, as well as any biomedical
researcher that issues queries in the framework.

B Homomorphic Cryptography

To achieve a simple and flexible architecture, we utilize a semantically secure
public-key encryption scheme. The public key encryption scheme adopted in our
architecture is probabilistic and possesses a homomorphic property. The homo-
morphic property allows us to compute the encrypted sum of two plaintext values
through the corresponding ciphertexts. Formally, let Epk(.) and Dpr(.) represent
the encryption function with public key pk and the decryption function with pri-
vate key pr, respectively. A secure public key cryptosystem is probabilistic and
homomorphic if the encryption function satisfies the following features:

Constant Efficient: Given a constant k and a ciphertext Epk(m) of m, we can
efficiently compute a ciphertext of km, denoted as Epk(km) := k×h Epk(m).

Probabilistic: Given a message m, c1 = Epk(m) and c2 = Epk(m), Dpr(c1) =
Dpr(c2) but c1 �= c2 with high probability.

Additive Homomorphic: Given the encryptions Epk(m1) and Epk(m2) of m1

and m2, there exists an efficient algorithm to compute the public key encryp-
tion of m1 + m2, denoted as Epk(m1 + m2) := Epk(m1) +h Epk(m2).

Our framework can be applied within any additively homomorphic cryptosys-
tem. In this paper, we situate the framework within the Paillier cryptosystem
[28] because it has relatively wide-scale adoption and standardization.
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Fig. 2. General Architecture

C k-Anonymity

Here, we briefly review k-anonymity [13,29]. Let QI be a set of quasi-identifier
attributes that can be used with certain external information to identify a specific
individual, T be a dataset represented in a relational form and T [QI] is the
projection of T to the set of attributes contained in QI.

AGE ZIP CODE

25 54339
75 47500
50 47535
30 54788

(a) Original Data

AGE ZIP CODE

[23, 45] 54***
[46, 90] 475**
[46, 90] 475**
[23, 45] 54***

(b) 2-Anon. Data

70, 75, 8050, 5315, 18 25, 30, 35

[46, 68][23, 45] [69, 90][1, 22]

       [1, 90]

[1, 45]                [46, 90]

(c) VGH of AGE

 ***** 

54350 5476547906

547**543**479**475**

47*** 54***

54339 5478847930
47535
47500

(d) VGH of ZIP CODE

Fig. 3. Data tables and value generalization hierarchies
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Definition 1. T [QI] satisfies k-anonymity if and only if each record in it ap-
pears at least k times.

The criteria for k-anonymity can be achieved via a number of mechanisms. In
this paper, we concentrate on generalization [29]. In generalization, values are
replaced by more general ones, according to a value generalization hierarchy
(VGH). Figure 3 contains VGHs for the attributes AGE and ZIP CODE. Ac-
cording to the VGH of AGE, we say that 25 can be generalized to [23, 45].

As an example, consider Figure 3(a). Here, we show a dataset T with quasi-
identifier QI = {AGE, ZIP CODE}. By generalization according to the VGHs,
we can derive dataset in Figure 3(b) (T [Q]), which satisfies 2-anonymity.
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Abstract. Private information retrieval (PIR) is normally modeled as
a game between two players: a user and a database. The user wants to
retrieve some item from the database without the latter learning which
item. Most current PIR protocols are ill-suited to provide PIR from a
search engine or large database: i) their computational complexity is lin-
ear in the size of the database; ii) they assume active cooperation by the
database server in the PIR protocol. If the database cannot be assumed
to cooperate, a peer-to-peer user community is a natural alternative to
achieve some query anonymity: a user submits a query on behalf of an-
other user in the community. A peer-to-peer PIR system is described
in this paper which relies on an underlying combinatorial structure to
reduce the required key material and increase availability.

Keywords: Privacy in statistical databases, private information
retrieval, combinatorial designs.

1 Introduction

In private information retrieval (PIR), a user wants to retrieve an item from
a database or search engine without the latter learning which item the user is
interested in. PIR was invented in 1995 by Chor, Goldreich, Kushilevitz and
Sudan [3,4] with the assumption that there are at least two copies of the same
database, which do not communicate with each other. In the same paper, Chor
et al. showed that single-database PIR (that is, with a single copy) is infeasible in
the information-theoretic sense. However, two years later, Kushilevitz and Ostro-
vsky [12] presented a method for constructing single-database PIR based on the
algebraic properties of the Goldwasser-Micali public-key encryption scheme [6].
Subsequent developments in PIR are surveyed in [15].

In the PIR literature the database is usually modeled as a vector. The user
wishes to retrieve the value of the i-th component of the vector while keeping the
index i hidden from the database. Thus, it is assumed that the user knows the
physical address of the sought item, which might be too strong an assumption
in many practical situations. Keyword PIR [2,12] is a more flexible form of PIR:
the user can submit a query consisting of a keyword and no modification in the
structure of the database is needed.

J. Domingo-Ferrer and Y. Saygın (Eds.): PSD 2008, LNCS 5262, pp. 315–323, 2008.
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We claim that PIR protocols proposed so far have two fundamental short-
comings which hinder their practical deployment:

1. The database is assumed to contain n items and PIR protocols attempt
to guarantee maximum privacy, that is, maximum server uncertainty on
the index i of the record retrieved by the user. Thus, the computational
complexity of such PIR protocols is O(n), as proven in [3,4]. Intuitively, all
records in the database must be “touched”; otherwise, the server could rule
out some of the records when trying to discover i. For large databases, an
O(n) computational cost is unaffordable [1].

2. It is assumed that the database server cooperates in the PIR protocol. How-
ever, it is the user who is interested in her own privacy, whereas the mo-
tivation for the database server is dubious. Actually, PIR is likely to be
unattractive to most companies running queryable databases, as it limits
their profiling ability. This probably explains why no real instances of PIR-
enabled databases can be mentioned.

If one wishes to run PIR against a search engine, there is another shortcom-
ing beyond the lack of server cooperation: the database cannot be modeled as
a vector in which the user can be assumed to know the physical location of the
keyword sought. Even keyword PIR does not really fit, as it still assumes a map-
ping between individual keywords and physical addresses (in fact, each keyword
is used as an alias of a physical address). A search engine allowing only searches
of individual keywords stored in this way would be much more limited than real
engines like Google or Yahoo.

In view of the above, in [11] a system is proposed in which a user masks her
target query by ORing it with k − 1 fake queries and then submits the masked
query to a search engine or large database which does not need to cooperate
(in fact, it does not even need to know that the user is trying to protect her
privacy). Rather than total privacy, this system provides a sort of k-privacy,
in that it cloaks the target query within k queries. This system works fine but
assumes that the frequencies of keywords and phrases that can appear in a query
are known and available: for maximum privacy, the frequencies of the target and
the fake queries should be similar.

1.1 Contribution and Plan of This Paper

We present a peer-to-peer private information retrieval system. It has the same
practical philosophy of [11]; however, rather than cloaking a query in a set of
queries, the system described here cloaks a user in a peer-to-peer user commu-
nity, because a user submits queries on behalf of her peers and conversely. This
approach certainly requires the availability of peers (not needed in [11]) but it
has the advantage of not requiring knowledge of the frequencies of all possible
keywords and phrases that can be queried.

The new scheme uses a type of combinatorial design called configuration to in-
crease service availability and reduce the number of required keys (see [16,13] for
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background on designs and configurations). The use of configurations in cryp-
tographic key management is not new (e.g. see [13]), but their use in private
information retrieval is.

Section 2 presents configurations. Section 3 describes the proposed peer-to-
peer PIR protocol. Section 4 assesses the performance and the privacy offered
by the protocol. Finally, Section 5 sketches conclusions and future work.

2 (v, b, r, k)-Configurations

We first define a combinatorial design and then a configuration as a special type
of design.

Definition 1 (design). A design is a pair (X,A), where X is a set of points
and A is a finite set of subsets of X, called blocks. The degree of a point x ∈ X
is the number of blocks containing x. The rank of (X,A) is the size of the largest
block.

A design is said to be regular if all points have the same degree, say r. A design
is said to be uniform if all blocks have the same size, say k (in which case the
design is uniform of rank k). In the next definition we used the notations in
[16,13].

Definition 2 ((v,b, r,k)-1-design). A (v, b, r, k)-1-design is a regular and uni-
form design with |X | = v, |A| = b, degree r and rank k.

A (v, b, r, k)-1-design corresponds to a bipartite semiregular graph with v+b ver-
tices and degrees r and k. A necessary and sufficient condition for the existence
of a (v, b, r, k)-1-design is that

bk = vr. (1)

Definition 3 ((v,b, r,k)-configuration). A (v, b, r, k)-configuration is a
(v, b, r, k)-1-design where any two distinct blocks intersect in zero or one point.

A (v, b, r, k)-configuration corresponds to a bipartite semiregular graph with v+b
vertices, degrees r and k, and girth strictly larger than 4. Configurations and
their history have been largely studied by Harald Gropp in [7,8,9,10].

The following lemma quantifies the “connectivity” between blocks in a con-
figuration.

Lemma 1. In a (v, b, r, k)-configuration the number of blocks intersecting any
specific block is k(r − 1).

Proof. Consider a (v, b, r, k)-configuration (X,A) and fix a block Ai ∈ A. For
any x ∈ Ai define

Bx = {Aj ∈ A : x ∈ Aj} \ {Ai}
Clearly, |Bx| = r− 1 for all x ∈ Ai. On the other hand, the sets Bx (x ∈ Ai) are
disjoint. Thus, the number of blocks intersecting Ai can be computed as∣∣∣∣∣

⋃
x∈Ai

Bx

∣∣∣∣∣ =
∑
x∈Ai

|Bx| = k(r−1). �
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A necessary condition for the existence of a (v, b, r, k)-configuration is v ≥ r(k−
1) + 1 [5]. Yet, this condition may not be sufficient.

Finding configurations and even determining if a configuration with a given
set of parameters exists is not trivial. One can use the next greedy algorithm to
find a (v, b, r, k)-configuration if it exists.

We think of A as a list of b lists. The ith list in A correspond to the points in
X contained in the ith block. We initialize all lists in A to empty lists. We use
a pair of indices (i, j), where i and j respectively indicate which list in A and
what position in the list we are dealing with. We start with (i, j) = (1, 1) that
is, we start by enumerating the first point of the first block.

Then we proceed by appending to the ith list in A a (j + 1)th point, while
the ith list has less than k elements or by appending a first point to the (i+1)th
list. When this is not possible because there is no possible point to append
satisfying the requirements of a configuration then backtracking is used (the last
assignments of points to blocks are deleted in reverse chronological order until
one is found that can be changed in a way compatible with the configuration
structure).

It is helpful to use a second list of lists corresponding to the v points in X ,
with the lth list indicating what blocks contain the lth point. It can be used for
verifying if a given point at a given position of a block in A is possible.

The algorithm is the following one:

while(0 < i ≤ b)

test =

⎧⎨
⎩

0 if Ai,j = NULL and j = 1
Ai,j−1 + 1 if Ai,j = NULL and j 	= 1
Ai,j + 1 if Ai,j 	= NULL

while(test ≤ v − k + j and appending test to Ai does not lead to a
configuration)

test = test + 1

if(test = v − k + j + 1)

Ai,j = NULL

(i, j) =

{
(i − 1, k) if j = 1
(i, j − 1) if j 	= 1

BACKTRACK

else

Ai,j = test

(i, j) =

{
(i, j + 1) if j 	= k
(i + 1, 1) if j = k

if(i = 0)

output ∅
if(i = b + 1)

output A.

We refer the reader to [10] for results on existence and particular examples of
configurations.
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3 A Peer-to-Peer PIR Protocol

Consider a peer-to-peer (P2P) community consisting of b users. Assume a dealer
who creates a key pool in the following way:

1. The dealer creates v keys and distributes them into b blocks of size k each
according to a (v, b, r, k)-configuration.

2. The dealer confidentially sends one block of k keys to each user (no two
users get the same block). E.g., if each user has got a public-private key
pair, confidentiality can be achieved by sending the block of keys encrypted
under the user’s public key. Let Ai be the block assigned to user ui, for i = 1
to b.

3. The dealer erases the v keys from its storage. If a trusted device such as a
smart card is used as a dealer, it can be assumed that keys are forgotten by
the dealer after distribution.

A variant of the above initialization process is to allow the users to send to
the dealer their preferences about which other users they would like to share
keys with. The dealer could take this input into account to the extent possible
when assigning blocks of keys to users.

At the end of the process, by Lemma 1 the block of keys of each user intersects
k(r−1) other users’ blocks. Consider now a storage pool consisting of v memory
sectors, each corresponding to one key in the key pool.

Note 1. In the above set-up process, users do not need to know each other’s
identity. When deciding whether identities are to remain pseudonymous or not,
one should carefully ponder whether the increased mutual trust derived from
mutual knowledge compensates the loss of privacy of users in front of the rest
of users in the P2P community. We will henceforth assume user pseudonymity.
See Section 4.2 below for further discussion on user privacy.

A protocol for peer-to-peer PIR among the b users is specified next. The keys
distributed to the users are used to key a symmetric cipher (e.g. see [14]). Also,
in what follows we assume that plaintext queries and answers to queries can be
distinguished from garbage by a user decrypting them; some kind of redundancy
(e.g a cyclic redundancy check) can be appended to the query or the query
answer to facilitate this distinction.

Protocol 1 (P2P PIR query submission)

1. In order to submit a query qi to a database or search engine, user ui randomly
selects one of the k keys in her block. Let xij be the selected key and U i

j =
{ui

j1, · · · , ui
j(r−1)} be the set of r−1 users with whom ui shares xij according

to the configuration used for key distribution. (Note that the sets U i
1, · · · , U i

k

are disjoint due to the configuration structure.)
2. ui reads the memory sector mij corresponding to key xij and decrypts it

under xij. Five cases can arise depending on the outcome of decryption:
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(a) The outcome is garbage. In this case, ui encrypts qi using a symmetric
cipher keyed by xij and records the encrypted query in sector mij .

(b) The outcome is a query qj issued by some user in U i
j , who expects ui to

submit it on her behalf. In this case, ui submits qj to the database/search
engine and records in sector mij the answer obtained after encrypting it
under key xij . Thereafter, ui goes back to Step 1 to select a new key and
obtain assistance in submitting qi to the database/search engine from
someone in the group of r − 1 users sharing the new key with ui.

(c) The outcome is the answer to a previous query q′j issued by some user
in U i

j and previously submitted by ui to the database/search engine on
behalf of that user. Since this answer has not yet been read by the user
in U i

j (a user is assumed to erase the query answer when she reads it),
ui goes back to Step 1 to select a new key and obtain assistance in the
submission of her own query qi.

(d) The outcome is a query q′i previously issued by ui, who expects some user
in U i

j to submit it on ui’s behalf. Since there is a previous query pending
to be serviced by some user in U i

j , ui goes back to Step 1 to select a new
key and obtain assistance with the submission of her new query qi.

(e) The outcome is the answer to a previous query q′i issued by ui and previ-
ously submitted by some user in U i

j to the database/search engine on be-
half of ui. In this case, ui reads the answer, then encrypts her new query
under key xij and finally records the encrypted query in
sector mij.

It can be seen that Protocol 1 will iterate until ui can have her query submitted
to the database/search engine by some other user. If a user does not have queries
to submit and never runs Protocol 1, she does not contact the database; if the
number of users contacting the database is very small (e.g. only two) there are
problems: i) the database may infer who is submitting what query, and ii) the
delay until a query answer can be collected can be too long. To prevent this, we
require that all users run Protocol 1 at regular time intervals, whether or not
they wish to submit actual queries (they can submit fake queries if necessary).

After submitting a query qi, user ui follows the protocol below to collect the
answer to qi:

Protocol 2 (P2P PIR query answer collection)

1. If xij was the key selected to submit qi, ui keeps reading and decrypting mij

at regular time intervals until either the answer to qi is found (and erased
from mij) or a timeout occurs.

2. If there was a timeout, ui calls Protocol 1 to select a new key and find some
other user who can assist her with the submission of qi.

4 Performance and Privacy

We examine in this section the influence of the configuration parameters k and r
on performance and privacy. The other two parameters do not need discussion:
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b is the (fixed) number of users in the P2P community and v is the number of
keys and depends on k, r and b according to Equation (1).

4.1 Performance

First we deal with performance in terms of required keys and required storage.
The proposed set-up process based on a (v, b, r, k)-configuration is compared
with the trivial case in which every user shares a different key with every other
user (complete connection graph). It turns out that performance improvement
is controlled by parameter r.

Lemma 2. If r > 2 it holds that:

– the number of keys and memory sectors required using a (v, b, r, k)-
configuration is less than the number of keys and memory sectors required in
the case of a complete graph;

– the overall number of keys stored by the users with a (v, b, r, k)-configuration
is less than in the case of a complete graph.

Proof. With a complete graph among the b users, the number of required keys
and memory sectors is b(b−1)/2. Each user stores b−1 keys, so that the overall
number of keys stored by the users is b(b− 1).

With configurations, the number of required keys and memory sectors is v =
bk/r (Equation (1)). The overall number of keys stored by the users is bk. Now,
from Lemma 1 it follows that k(r−1) ≤ b−1 (the number of blocks intersecting
a specific block cannot be greater than b− 1); thus

bk

r
≤ b(b− 1)

r(r − 1).

So for r > 2 there is a reduction in the number of required keys and memory
sectors with respect to the complete graph case. Similarly, since bk ≤ b(b −
1)/(r− 1), for r > 2 there is a reduction in the overall number of keys stored by
the users. �

In addition to storage, another performance metric is how long does it take for
ui to get her query submitted and answered. Clearly, the greater the number r
with whom ui shares the selected key xij , the shorter is the expected waiting
time.

Therefore, performance improves as r increases.

4.2 Privacy

If a good symmetric cipher is used for encryption, the encrypted contents stored
in any memory sector are indistinguishable from garbage (see [14] for a review of
the properties of the output of a symmetric cipher). Thus to an intruder not in
{ui} ∪U i

j the content of sector mij is indistinguishable from garbage; therefore,
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such an intruder does not gain any information on the queries submitted nor the
query answers received by users in {ui} ∪ U i

j .
Within U i

j , the r − 1 users do not know in principle to which other user in
{ui} ∪ U i

j do the queries and query answers correspond. From this remark and
those in the performance section above, one might be tempted to take r as large
as possible: a single key shared by all b users (that is, r = b and k = v = 1). Yet
this does not look like a good solution because then any user can see any query
or query answer, which does not seem very secure nor private: even if users are
pseudonymous, successive queries by the same ui are likely to be linkable, with
the subsequent profiling and re-identification risk for ui (e.g. a way to link ui’s
queries is through her IP address when ui writes her queries or reads her query
answers).

It seems better for ui to limit (pseudonymous) visibility of her query and its
answer to those parties strictly needed: the database/search engine and a set
of users just large enough so that the expected waiting time to get the query
answer is not too long. Indeed, if ui can select xij among k > 1 different keys
at Step 1 of Protocol 1, where each key is shared by a disjoint set of users (see
proof of Lemma 1), users in U i

j only see on average 1 out of k queries issued by
ui (and 1 out of k query answers received by ui). Therefore, the risk that a user
in U i

j can profile and thereby re-identify ui decreases as k increases.
Finally, let us examine the privacy of user ui in front of the database or search

engine. The queries issued by ui are submitted by the k(r− 1) users with whom
ui shares keys. In fact, each uj in that group of k(r−1) users submits on average
a fraction 1/(k(r−1)) of the queries issued by ui. But uj may also submit other
queries corresponding to other users different from ui with whom uj shares a
key. Therefore the query profile of ui is diffused among the k(r − 1) users with
whom ui shares a key and confused among the other queries submitted by those
users.

In summary, the greater r, the better is performance; the greater k, the greater
is privacy in front of the other users; the greater k(r− 1), the greater is privacy
in front of the database/search engine.

5 Conclusion

So far in the literature, practical PIR protocols that can be run against an un-
cooperative search engine or database aim at cloaking the user query among a
finite number of fake queries. We have introduced a new paradigm, in which the
user herself rather than the query is cloaked; indeed, the user seeks assistance
by a P2P community who submit queries on her behalf. Unlike the query cloak-
ing approach, any complex query can be submitted with our proposal and no
knowledge of the frequencies of keywords and phrases is required. The level of
privacy achieved is proportional to connectivity k(r− 1) of the P2P community.

From the combinatorial point of view, we have also contributed a construction
of configurations (the structure used for key and storage management).
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Abstract. The paper discusses the challenges linked to the need of the research 
community to have access to microdata files for scientific purposes. These 
needs have to be adequately balanced with the legal requirement of preserving 
the confidentiality of respondents. The paper presents the policies and instru-
ments available at the European Union to progress in the supply of data to the 
research community, while respecting the legal requirements. More specifically, 
the paper explains the current process dealing with research projects and the 
work of the European Statistical System Network (ESSnet) project for statisti-
cal disclosure control. Finally the paper describes future trends that are  
currently investigated in the European Union, and more specifically the devel-
opment of remote access facilities, the enhancement of disclosure control tools 
and the convergence towards common policies in Member States.  

Keywords: Statistical Disclosure Control (SDC), access researchers microdata, 
tabular and micro data protection. 

1   Introduction 

The objective of this paper is to provide an overview of the various issues related to 
confidentiality in a European-wide perspective. It aims to give technical experts an 
idea of the difficulties raised by the multinational and administrative perspective 
which might not be perceived at first sight. The different perceptions, the lack of well 
defined standards are sources of divergences that make standard confidentiality much 
more problematic at European level. This paper calls for a closer partnership between 
administrative and research community and for a strong scientific research input and 
responsibility in order to design best practices to feed legal reflection at European 
level. Statistical confidentiality is a critical issue for Eurostat because it is at the core 
of the delicate trust data providers have towards statistics compilers. It influences 
greatly the quality of EU statistics and consequently the relationship between Eurostat 
and the ESS. 

Technical development in the information era confronts the ESS with new chal-
lenges – not only with regard to Data Access - and the statistical disclosure control 
(SDC) problems connected to it. 
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2   Confidentiality Legal Framework 

2.1   General Framework 

The right to privacy is a fundamental right. It includes the protection of the person in 
the context of personal data processing. That means for instance the right to receive 
certain information, the right to access the data, the right to have the data corrected, 
etc. Statistical confidentiality primarily aims at safeguarding privacy in the field of 
statistics and is a key to the necessary trust that has to be maintained between statisti-
cal bodies and respondents. Mutual confidence ensures accurate and reliable basic 
information and eventually high quality statistics. 

At EU level, statistical confidentiality is addressed in the following legal acts: 
 

a. Council Regulation (EURATOM, EEC) No 1588/90 of 11 June 1990 on the 
transmission of data subject to statistical confidentiality to the Statistical Office 
of the European Communities; 

b. Council Regulation (EC) No 322/97 of 17 February 1997 on Community Statis-
tics; 

c. Commission Decision 97/281/EC of 21 April 1997 on the role of Eurostat as re-
gards the production of Community statistics; 

d. Commission Regulation (EC) No 831/2002 of 17 May 2002 and following 
amendments implementing Council Regulation (EC) No 322/97 on Community 
Statistics, concerning access to confidential data for scientific purposes.  

 

The Statistical Code of Practice (CoP) was adopted by the Statistical Programme 
Committee in 2005.  It includes some provisions about the use of a statistical data by 
researchers and the protection of confidentiality and provides a framework to develop 
a harmonised activity in this domain.  The observance of the CoP is now monitored 
by means of peer reviews which focus inter-alia on confidentiality protection and 
availability of microdata for research purposes. 

Statistical confidentiality is regulated at EU level only to the extent to which statis-
tical activities carried out by Eurostat and the national statistical authorities for the 
production of Community statistics are concerned. Specific confidentiality regimes 
still coexist at national level and differences may appear with the EU statistical confi-
dentiality regime. These differences are less on the substance (the general concepts 
are common to a very large extent) than on the perception of the issue (the national 
framework remains the frame of reference), which is equally important. 

The existent statistical confidentiality regime is thus not unified in one regulation, 
which leads to difficulties of interpretation between Member States and the Commis-
sion, which creates difficulties in different sectors. Improving the existing framework 
should contribute to avoiding repeated discussions and even in some cases obstacles 
when dealing with confidentiality issues in the context of the negotiation of sectoral 
regulations. 

The wide acceptation of an objective basis for declaring data confidential and 
measuring disclosure risk would definitively ease legal progress in the field of statis-
tical confidentiality. Scientific researcher’s authority is certainly required to put a cut 
off to the endless subjective discussion. Lawyers are waiting for a strong technical 
input in order to design harmonised legislation. 
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2.2   Access to Researchers 

Microdata sets are becoming important because of increasing interest in accessing 
them by researchers. This interest has two related drivers. The first is an aspect of 
modern life—accountable government and transparency. This is reflected in an in-
creasing interest and demand for evidence-based policy, policy analysis, as well as 
monitoring policies and their impact. This kind of activity requires timely, detailed 
information and frequently requires more detailed analyses than are presently pub-
lished by statistical organisations. Sometimes these analyses are seen as being outside 
the remit of national statistical institutes (NSIs) or even as activities that could com-
promise the perceived independence of NSIs. Indeed, these analyses are performed 
often by academic institutions or independent research institutions. 

The second driver here is the changing nature of research itself. Modern research 
cannot be satisfied with aggregate data. Microdata are needed for fine analysis and 
model building.  

In summary the advantage of having microdata sets at Eurostat level is twofold: 
 

• It brings enormous flexibility in the use of the data and in the production of 
tabulated results according to users’ requests, namely additional non-
standardized tabulated data can be done at Eurostat (beyond standard tabulations 
transmitted by Member States). It increases the coherence of the statistical out-
put.  

• It allows better use and more thorough analysis of data collected at ESS level, 
increasing the benefits of the data collection, making better use of public money 
and eventually lowering the burden on statistical respondents. 

 

Access to microdata for scientific purposes in the European Union: Commission 
Regulation (EC) No 831/2002 

In order to meet the needs of researchers in the EU, two instruments have been de-
veloped in the frame of the basic confidentiality legal acts (Council Regulations 
1588/90 and 322/97).  These two instruments are (1) the Committee on Statistical 
Confidentiality (CSC) that has the implementation powers in all confidentiality mat-
ters and (2) the Commission Regulation 831/2002 concerning access to confidential 
data for scientific purposes.   

At the Committee on Statistical Confidentiality Meeting of 2005 an action plan on 
confidentiality was approved including, amongst others, specific measures to improve 
and streamline the implementation of Commission Regulation 831/2002. The imple-
mentation of the access to microdata was improved by three means.  Firstly, by reduc-
ing the administrative delays for establishing the contract with the researchers by a 
fast track consultation with Member States on research projects of a certain type (ty-
pology criteria agreed with member States); secondly, by enlarging the number of 
datasets available for researchers and, thirdly, by opening the safe centre at Eurostat. 

At present microdata for researchers can be provided as anonymised microdata sets 
for the European Community Household Panel (ECHP), the Labour Force Survey 
(LFS), European Union Statistics on Income and Living Conditions (EU-SILC), 
Structure of Earnings Survey (SES) and Community Innovation Survey (CIS).  In 
addition, the Education and Training Statistics Working Group is now discussing 
anonymisation criteria to distribute Adult Education Survey (AES) microdata files 
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which should start in 2008.  Commission Regulation 831/2002 is currently being 
amended in order to include the Farm Structure Survey (FSS). 

Besides access to anonymised microdata sets, researchers can have access to SES 
and CIS confidential microdata sets in the safe centre located at Eurostat. 

The efforts done by the Confidentiality Committee to streamline the administrative 
procedures associated to providing microdata for researchers have lead in the last four 
years to a rapid increase of the number of contracts established with researchers (from 
18 contracts in 2003 to 130 contracts in 2007).  

There are two levels of access to microdata: 
 

• Level one: Confidential data as obtained from the national authorities. They 
allow only indirect identification of the statistical units concerned. This ac-
cess is done through the use of a safe centre at Eurostat. 

• Level two: Sets of anonymised microdata extracted from the above data. 
They are individual statistical records which have been modified in order to 
minimise, in accordance with current best practice, the risk of identification 
of the statistical units to which they relate.  This access is done via distribu-
tion of encrypted CD-ROM according to contracts established between Euro-
stat and the corresponding institutions. 

 

The advantage of possibilities offered by this regulation is that researchers now 
have the possibility to have access to harmonized datasets spanning all Member 
States, therefore avoiding the lengthy process of making requests to each MS and 
benefiting from a output harmonised product. This gives researchers opportunities for 
pan-European Union research and analyses.  

Table 1. Research contracts – Main topics - Year 2006 

Microdata from ECHP, EU-SILC, LFS and CIS 

Studies of specific sub-populations Studies of specific phenomena 

• Low skilled/unskilled labour force 
• Early school leavers 
• Poor 
• Regions/Europe 
• Long-term unemployed 
• Married women 
• Female labour force 
• Divorced 
• Temporary Workers 
• Persons at end of working life 
• Youth 
• Elderly 
• Disabled 
• Immigrants 
• Older workforce 
• SME 
• Researchers 

• Mobility 
• Income inequality and distribution 
• Transition employment <-> unemployment 
• Fiscal, subsidies and insurance policies 
• Intra-family transfers 
• Inequality in income and education 
• Job structure changes (self employment, 
formal/informal) 
• Wage changes 
• Educational choices/training/ life long learning 
strategies 
• School-work transition 
• Labour market participation and fertility 
• Childcare 
• Discrimination 
• Real estate investments 
• Public pension schemes 
• Growth of cities 
• Innovation  
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The table above presents a synthesis of the projects related to submitted requests 
for microdata access to Eurostat in 2006. 

Article 3 of Commission Regulation 831/2002 foresees a fairly straightforward and 
simple request process for researchers from the following categories of organisations: 

 

• universities and other higher education organisations established under Com-
munity law or by the law of a Member State; 

• organisations or institutions for scientific research established under Community 
law or under the law of a Member State; 

• national statistical institutes of the Member States; 
• the European Central Bank and the national central banks of the Member States. 
 

For the other bodies, article 3 of the regulation lays down the condition that they 
must first be approved by the CSC if they wish to make requests to access confidential 
data for scientific purposes. The prerequisite to achieve admissibility is that the institu-
tion has demonstrated that it fulfils a set of criteria. The CSC has approved these criteria 
at its meeting of 10 December 2004. Specific services of EU Institutions, which carry 
out statistical activities, may be considered eligible for access for scientific purpose to 
specific confidential microfiles provided that the equivalent guarantees are provided. 
Commission Decision 2004/452/CE lists the bodies that have been considered admissi-
ble.  Universities based outside Europe can also be considered as admissible; the Uni-
versity of Cornell (USA) was the first to be included in this list. The efforts will  
continue to extend the list of other bodies than can be regarded as admissible. 

2.3   Initiatives at ESS Level on Microdata Access 

Cenex on statistical disclosure control 
The Task Force on Centres of Excellence set up by the Statistical Programme Com-
mittee (SPC) proposed to launch during 2005 a pilot project on the concept of Centres 
of Excellence (Cenex).  Briefly, the concept consisted of setting up a team of national 
statistical organisations that provided expertise on a specific domain, developing tools 
or knowledge that benefited not only the participating organisations but the rest of the 
ESS. 

Statistical disclosure control (SDC) was considered one of the two subjects that in-
tegrated the pilot phase of Cenex.  For the generation of comparable statistical infor-
mation across countries it was essential to assure that similar methods and tools were 
used to protect confidentiality in the published information. As long as member states 
compiled their statistics using different SDC-methods, the availability of useful Euro-
pean microdata was very much hampered.  

The Cenex on SDC was launched by end 2005 and lasted for one year. This pilot 
was a success as it allowed participating NSIs to work together on various SDC 
themes, share the expertise and created necessary synergies. As a result the detailed 
inventory was done on the situation in the ESS regarding SDC methods and tools, as 
well as legal and administrative environments. The project was also beneficial to non-
participating NSIs, since it permitted them to share their practices, compare the results 
with other NSIs and profit from the core work of the Cenex partners.  The main out-
puts of this Cenex were a Handbook, an upgrading of the ARGUS SDC software and 
several training and scientific actions. 
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2.4   Considerations at International Level on Microdata Access 

The 2003 Conference of European Statisticians (CES) agreed that supporting research 
with microdata is an important activity of the NSIs.  CES set up a Task Force to de-
velop guidelines on managing confidentiality while facilitating microdata access for 
research.  The Task Force, chaired by Dennis Trewin, had prepared guidelines which 
were endorsed by the CES plenary session in June 2006. They addressed the need to 
unify the approaches internationally and to agree on core principles for dissemination 
of microdata. They also suggested moving towards a risk management rather than a 
risk avoidance approach in the provision of microdata. The principles agreed are gen-
eral enough to be applicable in countries with different level of development and are 
accompanied by examples of good practices. 

Eurostat and the Office of National Statistics in the United Kingdom organised in 
October 2006 a workshop on microdata access having as objective to reinforce the 
essential principles of microdata access as set out in the CES Guidelines; to share 
experiences of policies and practices in Member States regarded to be avant-garde on 
research access to microdata; to develop a shared understanding of the appropriate 
levels of capacity and support to the NSIs' activity in this context; and to give rise to 
actions that can be implemented in NSIs.  

A follow up Workshop is foreseen by Eurostat on 23-24 October 2008 to continue 
the efforts to foster greater consistency across countries, facilitate better research 
access to microdata and improve the administrative arrangements 

3   Methodological Issues 

In general the legislation at national and European levels is fairly harmonised with 
respect to what is considered as confidential data. However, when implementing this 
legislation, the criteria used differ considerably from country to country. These crite-
ria have sometimes an important historical weight; sometimes do not have a solid 
scientific basis; and in many cases lead to conservative solutions because real risks 
are not well mastered. 

This diversity of interpretations is a consequence of the fact that there is no harmo-
nised approach of disclosure risk. To agree on disclosure risk, one should agree first 
on the sensitivity of the data (how “private” are the variables in the file) and on the 
possibility to match these data with external sources, that is, to the presence of key 
variables or identifying variables. Second, there is a need to find a harmonised way to 
measure the risk. Methodological work is needed to reconcile the different approaches 
or to express preference for one of them. 

The need to have common core criteria which, while providing a satisfactory har-
monisation level, allow for a degree of flexibility to adapt to the specific perception of 
the society in each country is obvious. This will also have the advantage of having a 
more solid internationally agreed basis that better justifies national choices made in 
the release of microdata. 

Disclosure protection of EU aggregates 
Most of the time, Eurostat compiles EU aggregates on the basis of national aggregates. 
These are accompanied with a confidentiality flag informing Eurostat that the informa-
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tion should be treated as confidential. In the best situation, Eurostat is also informed on 
the presence of dominance in these aggregates. However, meta information is not stan-
dardised and even sometimes there exists confusion between not publishable because of 
lack of reliability and confidential as meant in the legal framework. 

To declare information as (primary) confidential, Member States use measures of 
risk of disclosure of individual information (dominance rules, threshold rules) which 
are not harmonised. The level of protection can vary between Member States depend-
ing on different perceptions of the level of disclosure risk and also simply of the  
perception of the damage of disclosure itself. Distinction is rarely made between vari-
ables themselves: some variables might be considered as non sensitive whereas other 
from the same record could be. 

The lack of harmonisation of primary confidential rules causes major methodological 
problems at Eurostat level. Software packages for handling secondary confidentiality 
are not designed to deal with such a situation. Regarding this aspect progress has been 
achieved for Prodcom and Structural Business Statistics (SBS), where confidentiality 
rules were developed and agreed by Member States specifically for each data collection. 
Based on these rules and using the Eurostat framework contract for methodological 
support, a table protection solution based on controlled rounding has been developed to 
compute publishable rounded values of those EU aggregates which are not publishable 
directly according to the Prodcom confidentiality rules. An algorithm has been devel-
oped and needs to be tested by Eurostat. For SBS, first a study was done to study the 
feasibility of using the restricted tabular adjustment proposal to identify EU aggregates 
which would not be published directly but would be replaced by an approximation. The 
development of the respective algorithm is at the moment on going. 

Disclosure protection of microdata 
To some extend the same holds when Eurostat has to design, in collaboration with 
Member States, anonymisation of microdata to be released to researchers. Despite 
they share common objectives:  

 

• the need to follow Regulation principles on the right for privacy,  
• the need to maintain the trust the respondent have in the statistical system,  
• the need to monitor the release so to avoid confidentiality breach,  

 

the differences in the perception of the risk and the lack of a universal measure of risk 
render the possibility of a consensus very thin.  Part of the problems lies in the ab-
sence of knowledge of real risk. 

This situation would be improved if once again, European experts would agree on 
a harmonised framework, reflecting the state of the art in terms of disclosure control 
technique, to assess and to measure disclosure risks by practitioners. 

4   Future Perspectives 

With respect to medium term perspectives, some components are already identified: 
 

(1) The new legal framework 
In its 57th meeting of 29 and 30 November 2005, the SPC agreed on an approach for 
the revision of the basic statistical legal framework, based on a paper presented by 
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Eurostat. After consultation of the Member States this led to a new proposal that was 
supported by the SPC in its meeting of 20 September 2007 and is now in the phase of 
submission to the Council to launch the co-decision process.   

Some of the new aspects of the new legal framework concern statistical confidenti-
ality: firstly, the need to enhance the role of NSIs and Eurostat for organisational, co-
ordination and representation purposes was noted. In this context the current SPC is 
proposed to be replaced by a new Committee, the European Statistical System Com-
mittee. This new Committee is entrusted also with the functions of the CSC, which 
thus will cease to exist. The new legal framework moves towards providing some 
changes in the confidentiality chapter: 

 

• General issues and definitions 
 

The relevant provisions of Council Regulation 1588/90 on the transmission of data 
subject to statistical confidentiality to Eurostat have been integrated in the new basic 
legal act. For the sake of transparency and comprehensiveness, the basic legal act 
covers all guiding principles for confidentiality, including exceptional cases for pas-
sive confidentiality and dissemination of data from public sources or with the agree-
ment of the statistical data subject. A reference has been included to measures to en-
sure the physical and logical protection of confidential data. Such measures shall be 
adopted by comitology (regulatory procedure).   

 

• Exchange of confidential data 
 

The exchange of directly identifiable data between Member States and Eurostat 
and between Member States is allowed by deleting the words ‘which do not permit 
direct identification’ in Article 14 of Council Regulation 322/97. The revised basic 
legal act includes an enabling provision for the exchange of confidential data with the 
European Central Bank (ECB). Transmission of confidential data will be justified 
only in cases where it is explicitly laid down in a legislative act adopted by the Par-
liament and the Council. Moreover, a legal guarantee must be given that the data are 
safely protected and used only for statistical purposes.  

• Access for scientific purposes 

The basic legal act contains a provision of a general nature enabling access to con-
fidential data for scientific purposes. The approval of Member States is required when 
the data concerned have been transmitted by them to Eurostat, but, in order to allow 
more flexibility, the word ‘explicit’ has been removed. All implementing measures 
concerning the modalities, rules and conditions for such access are to be decided by 
comitology, more specifically by the regulatory procedure with scrutiny. 

 

(2) ESSnet on SDC follow-up 
The work done by the Cenex on SDC showed very big differences in terms of confi-
dentiality treatment across the ESS. It demonstrated as well that more emphasis 
should be made on the knowledge transfer and building up of the expertise in less 
experienced countries. The analysis of the results also showed that it is essential to 
improve and adapt the existing SDC tools to NSIs environment. Since these environ-
ments and needs vary from country to country a more customized approach would be 
needed in order to make the software operational in the ESS. Last but not least, Cenex 
on SDC emphasized the need for further research in various SDC fields. In order to 
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exploit these first results, and enable their appropriation by all NSIs and improve 
further SDC methods and tools, a call for proposals for a follow up ESSnet on SDC 
was launched (ESSnet is the new name given by the SPC to Cenex projects). The 
project has started in January 2008 and will last 24 months. 

The objectives of this project are manifold: dissemination and follow-up of the 
Cenex on SDC work, especially handbook finalisation; further investigation of NSI 
needs on the basis of an inventory and on-site visits where necessary; software SDC 
adaptations and improvements in order to better address NSIs' needs; facilitation and 
test of the implementation in the different NSI environments; research work in spe-
cific SDC fields of interest to NSIs; active involvement of all (not only participating 
partners) NSIs in ESSnet work via contributions to forum discussions; participation in 
training actions… 

 
(3) Remote access and delocalization of safe centres 
There is a broad agreement among countries that this is a very promising approach.  
In order to facilitate the European reflection on this subject Eurostat has organized an 
Expert Group on remote access. The first meeting took place on 15 June 2007 and the 
second on 23 November 2007.  

The action has the following objectives:  
 

• To facilitate integrated European wide access and use of microdata sets from 
official statistics for scientific purposes; 

• To develop a European integrated approach to remote access systems to mi-
crodata and to determine a remote access standard. 

 

After the first meeting a roadmap for the future was developed. The actions fore-
seen depend mostly on the available types of data (either confidential or anonymised 
data) and on the types of access (access in safe centres to the data stored on-site or 
remote access to the data stored in the secure server outside).  They are combined in 
different projects with shared responsibility and different leadership of the actors 
involved. A mixture of instruments financing these actions can be used (FP7, ESSnet, 
NSIs' resources). The approach for remote access will be planned in a step-wise man-
ner, broken down in five phases: 

 

• In the first stage two remote access options will be assessed: 
- Remote facilities: data can be seen on the computer screen, manual confidentiality 

check after submission of final output, 
- Remote execution: data not seen on the computer screen, query submitted by re-

searchers, first automatic confidentiality check of the query, final output checked 
automatically, manual checks on the random basis. 

Both options will be deeply analysed and prioritised from the point of view of feasi-
bility and the utility to the researchers. 

• In the second stage two pilot projects (ECHP and data archive) should be launched 
and tested. 

• In the third stage a remote access to the microdata from the network of safe centres 
located in Member States might be tested. In this case no control of the identity of 
researcher will be needed. For the testing of the approach the microdata listed in 
Commission Regulation 831/2002 might be used. 
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• In the fourth stage the access to the microdata produced at national level and not 
transmitted to Eurostat will be made possible. 

• In the fifth stage of the project remote access from the workstation of the re-
searcher will be developed and tested. 

 

Eurostat plans to launch the first and second phase by a pilot project that will be 
the subject of an ESSnet to be launched in 2008. ECHP European datasets could be 
deposited in the accredited safe centres to be accessed by researchers visiting these 
centres. If this pilot is successful, other datasets could be used namely business mi-
crodata sets (SES and CIS). 

In addition, the possibility to establish framework contracts with data archives to 
host anonymised datasets will be explored in 2008. 

 
(4) Public use files 
Public use files (PUF) are the most accessible; widely and freely used microdata 
products made available by statistical institutes, but their value for policy for much 
policy relevant research is limited. Nevertheless these files are useful for some re-
search purposes as teaching aids and are a good advertisement for a statistical insti-
tute. Continued distribution of PUF is threatened by the increased re-identification 
risk associated with both technological advances in linking software and widespread 
availability of administrative records. During the last decade researchers have devel-
oped increasingly sophisticated methodologies for restricted data products. The de-
velopment of a methodology for generating synthetic or virtual data is a relatively 
recent activity. A key objective of the method is to preserve faithful representations of 
the original data so that inferences from the synthetic data are as consistent as possi-
ble with the inferences that would be drawn from the original data. One attractive 
feature of the synthetic data approach is that it can be used to create multiple PUF 
from the same underlying data – targeted at different audiences. The methodology of 
synthetic files as a measure to replace PUF need to be further researched.  

The work at sectoral level to establish the criteria for establishing PUF (such as the 
work of the EU-SILC Task Force on anonymisation and establishment of PUF) 
should continue to be promoted in the future via the establishment of sectoral task 
forces that will define PUF for each survey. This should be facilitated by the fact that, 
in the new statistical law, PUF are no longer considered confidential 

5   Conclusions 

(1) There is an important gap between the information contained in statistical data and 
what a statistical office actually releases.  A way to fill this gap is to supply mi-
crodata files to researchers. 

(2) There are also many risks that have to be mastered - these are related to the legal 
protection of identification of individuals; to the possibility of bad use of the data; 
and to the perception of individuals of abusive manipulations of their information.  
These risks should be well managed, moving from a perspective of risk avoidance 
to risk management. 

(3) The objective is to fill the gap as long as the risks are satisfactorily managed.  For 
this purpose several legal and technical measures can be explored.  The legal 
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measures concern eligibility of researchers and research projects.  The technical 
ones refer to the different methods of confidentiality protection. 

(4) International reflections show that although there is a broad consensus in favour of 
this supply of microdata to researchers, there is a diversity of views on many of 
the more detailed issues.  In particular, criteria for considering a file sufficiently 
safe for dissemination vary widely. 

(5) Commission Regulation (EC) No 831/2002 is a useful legal frame for the supply 
of microdata to researchers.  After a difficult initial start, its implementation was 
considerably improved. 

(6) Several ongoing actions facilitate the harmonisation of methods, practices and 
tools and streamline the process of supply of data to researchers. 

(7) Various lines are being further explored to improve the dissemination of micro-
data to researchers.  First, the continuation of the development of harmonised cri-
teria for anonymisation and for eligibility of researchers/research; second, the  
legal frame to prevent bad use; third, the application of the Code of Practice; 
fourth, exploring the possibility of remote access to microdata.  
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